Web Mechanisms

© 2013 Christopher Vickery

While it is perfectly possible to create web sites that work without knowing any of
their underlying mechanisms, web developers must eventually develop an accurate
model of how the web functions in order to work effectively.

This document gives a model of how the underpinnings of the web work. The model
omits details and ignores exceptions to the rules, but is accurate in what it does say.

Computer networks provide a mechanism for transmitting bits of information from
one computer to another. The physical medium for transmitting the bits may be
wires (Ethernet, telephone, etc.); radio signals (Wi-Fi, for example); fiber optic
cables (such as FiOS), or any other signaling mechanism one could imagine. For our
purposes we'll just assume there is some way for a computer to transmit and
receive bits. With that assumption in place, we’ll look at how those bits are used to
encode messages, and how those messages get delivered to the intended recipient.

The basic model used by the Internet is that computers exchange messages with
each other. These messages generally contain plain text that could be read by people
as well as by computers, but to make the messages unambiguous and easier for
computers to process, the messages have to adhere to quite rigid structures, known
as protocols.

At the lowest level, messages are broken into relatively small packets, which are
structured according to the Internet Protocol (IP). An IP packet has two parts: a
header and a body. The developers of the Internet thought in terms of postal mail,
where letters are put inside envelopes, with the envelope containing the delivery
address and a return address. By analogy, the header of an IP packet is an envelope
and the body is the message that goes inside the envelope.

Just like postal mail envelopes, IP packet headers contain a delivery (destination)
address and a return (originator) address. In the case of IP, these addresses are
binary numbers. Every computer attached to the Internet has to have a unique
binary IP address so there is no ambiguity about where a message is supposed to be
delivered.

There are currently two versions of IP in use: version 4 (IPv4) uses 32-bit addresses,
but the network is in the process of converting to version 6 (IPv6), which uses 128-
bit addresses. The reason for the change is that 32-bit addresses allow “only” 4
billion (232) computers to be connected to the Internet at a time. The way binary

numbers work, changing to 128-bit addresses doesn’t just quadruple the number of
computer addresses (32 x 4 = 128), it multiplies the number by 296 (232 x 296 = 2128)
which will suffice until computers are more ubiquitous than atoms in our galaxy.

To send an IP message, often called a “datagram,” from one computer to another, the
sender creates a packet with the receiver’s IP address and its own IP address in the
header, whatever information it wants to transmit in the packet body, and sends it
off to some other processor that it is connected to (either by wire, wirelessly, or
whatever), which starts a process in which routers and switches examine the header
and pass the packet on to another router or switch that will decide how to get the
packet closer and closer to the destination computer. The routing process is
complex, and individual packets can take different routes to go between the same
two computers, which means they might not be received in the same sequence in
which they are sent. Furthermore, the process is not designed to be reliable: routers
are allowed to discard packets if it is too busy to handle them.

Because datagram delivery is unreliable, there is another protocol for delivering
messages reliably that is built “on top” of IP: the Transmission Control Protocol
(TCP). The sending computer breaks TCP messages into IP packets, with the body
part of the IP packets containing a TCP header and part of the message body. That is,
a single TCP message is typically requires more than one IP packet. The TCP header
includes housekeeping information that says something like, “I am packet number x
of y packets that make up message z.” The TCP handler at the receiving computer
arranges the packets it receives in the correct order, sends back requests for
retransmission of any packets that do not show up in a reasonable amount of time,
and sends back an acknowledgement when it has received the entire message. It's
this two-way communication, with provision for handling dropped packets, that
enables TCP to provide reliable message passing using unreliable IP datagrams.
Because so much Internet traffic uses these two protocols, they are typically lumped
together as “TCP/IP.”

The notion of TCP being built “on top of” IP is the basis for the layered nature of the
internet: the IP layer provides a way to send datagrams between computers, but
unreliably; the TCP layer adds a way to send messages between computers reliably.
The TCP layer puts its messages inside the body sections of the IP layer packets.

But we need yet a third layer: one that allows not just computers, but programs to
communicate with each other, web servers and web browsers in particular. Just like
the lower layers, these programs use their own protocols to exchange messages, and
in this case these messages are carried inside TCP message bodies. Web servers and
web browsers use a protocol called the Hypertext Transfer Protocol (HTTP). Other
protocols in common use include the Simple Mail Transfer Protocol (SMTP) for
email, the Secure File Transfer Protocol (SFTP) for file transfers, the Remote
Desktop Protocol (RDP) for remote login using a graphical user interface, and the
Secure Shell protocol (SSH) for remote login using a command line interface.

To identify a program, TCP messages include a protocol identification number to tell
which program on the other computer should receive the message. The common

name for these identification numbers is port numbers, and they are discussed
further in the section on “Operating Systems and Internet Servers” below.

HTTP, like most program-level Internet protocols, is based on what is called the
client-server model. In this model, one program, called the client, sends a request
message to another program, called the server, which sends a reply message back to
the client. Once a request has been sent and a reply has been received, the message
exchange is complete. Unlike a telephone conversation where you stay connected to
the other party until one or the other of you hangs up (“breaks the connection”) the
internet is built on this “connectionless” model in which each message exchange is
independent of any others. As you can imagine, this design makes some Internet
activities tricky to build. For example Voice over IP (VolP, like Skype) has to provide
a continuous connection between the two sides of a telephone conversation even
though the speech sounds are actually being delivered using IP datagram packets;
VoIP uses IP, but it doesn’t use TCP.

In the client-server model, the client has to have the server’s [P address and port
number in order to send a request to it. The server can then use the return address
in the message to send its reply back to the client. To be complete we’ll mention that
the client program can use an arbitrary port number for receiving the reply: it sends
its port number along with its IP address in the TCP header.

The terminology is that the server must use a “well-known” IP address and port
number, meaning simply that there has to be some way for clients to know where to
send their requests. We’ll come back to this topic in the section on “Client Requests.”

It’s worth noting here that “getting a web page” can require many request-reply
message exchanges between the client (a web browser, such as Internet Explorer,
Firefox, Chrome, or Safari) and the server. For example, the browser would start
with a request for an HTML document, and then, when it examines the code in that
document, might find links to stylesheets, JavaScript code files, and image files, all of
which have to be fetched from the server using separate request-reply message
exchanges.

Microsoft Windows, Apple’s OS X, and Linux are all operating systems that support
both HTTP clients (browsers) and HTTP servers. In this section we’ll look at how
these operating systems support HTTP servers. There are two widely used HTTP
servers, but one of them, called IIS, runs only on computers running the Windows
operating system. Instead, we will use the Apache HTTP server as our example: it is
freely available, runs on all three operating systems, and is more widely used than
[IS.

When you use a laptop or desktop computer, you are familiar with the idea of
running more than one program at a time, say a word processor, a web browser, and
a music player. Likewise, server computers also typically run several “service”

programs at the same time, such as a web server, a mail server, a file server, and
likely several other programs that all use the internet to communicate with remote
clients.

To manage the task of running several programs at a time, operating systems handle
two important tasks: (1) allocating resources, such as memory and access to the
central processing unit (CPU), to the different programs as they need them, and (2)
providing the low-level code needed for performing input and output (I/0)
operations. It’s a particular set of /O operations that we are interested in here:
receiving request messages from clients and sending reply messages back to them.
With multiple server programs running at the same time, the operating system
needs a way to know which server is to receive each request message that comes in
over the network. Getting a server’s reply messages back to the client is somewhat
less complicated, but the client computer has the same issue to deal with: how to get
incoming network messages to the correct problem.

Server programs typically start running when a computer is turned on and continue
to run until the computer is turned off again. When a server program starts up, it
tells the operating system that it wants to receive messages directed to a particular
port (the protocol identification number mentioned above.) Each protocol has a
standard port number that it uses. For HTTP, it’s port number 80. For SMTP it’s port
number 25; SSH uses number 22; HTTPS (HTTP, but with encrypted request and
reply messages for security) uses number 443; etc. The operating system will not
allow more than one program to “listen” to a given port number.

There is a minor point to make here, which will show up in the next section when
we deal with URLs. It is possible to run multiple copies of the Apache HTTP server
program on the same computer simultaneously, but only one copy can use port 80.
The others would have to use a different port number, even though they are running
the same protocol.

So there are well-known port numbers associated with different protocols, such as
port 80 for HTTP. But how does a server’s binary IP address become “well known”
enough for a browser to be able to direct our request to the proper host (server)
computers? Google’s [P address is 10101101 11000010 00101011 00100010. How
does the browser know it should use that address when we click on “google.com?”

The answer is yet another Internet protocol called the Domain Name System (DNS)
(which uses port number 53 if you're interested). There are computers connected to
the internet that run DNS servers that know how to handle request messages
containing a fully qualified domain name (FQDN), like google.com or
babbage.cs.qc.cuny.edu. A DNS server sends back reply messages with the
corresponding binary IP addresses.

As an aside, people sometimes have to deal with binary IP addresses, and there is a
convention to break the binary numbers into smaller groups, which can be written
in decimal (IPv4) or hexadecimal (IPv6). For example that binary address for Google

can be written using decimal numbers for successive groups of 8 bits. 10101101 in
binary is 173 in decimal; 11000010 is 194; 00101000 is 43; and 00100010 is 34, so
Google’s IP address in “dotted decimal notation” is 173.194.43.34, which is easier
for humans to deal with than the full 32-bit binary number. (Nobody says “easier”
means “easy!”)

If you think about it, computers can’t use DNS to get the IP address of the DNS
server they want to contact: those IP addresses have to be known, and entered into
the operating system when its network connection is first set up. If you poke around
in your computer’s network settings, you will find the IP addresses of at least one
DNS server stored there in dotted decimal notation.

The HTTP protocol uses Universal Resource Locators (URLs) to specify web servers,
port numbers, and individual web pages. The full structure of a URL is quite
complicated, but we will “parse” an example to see how they are structured in
general:

|http: //babbage.cs.qc.cuny.edu:80/courses/sample. php?name=vickery&passwd:secret|

http The name of the protocol. Another example would be https.

2// Characters to separate the protocol from the next part.

babbage.cs.qc.cuny.edu The FQDN of the “host” computer running the HTTP server.

: 80 The port number of the HTTP server running on
babbage.cs.qc.cuny.edu

courses/sample.php The path to the resource being requested.

? A character to separate the first part of the URL from the next
part.

name=vickery&passwd=secret | A query string to be passed to the resource being requested.

There are several common variations on this structure: if the protocol name and/or
port number are omitted, browsers will supply them for you automatically; the
query string may be omitted if it is not needed or used, or it can be hidden inside the
body of the HTTP request to keep it from appearing in the address bar of the
browser; the path is normally a file system (disk) path to a file, but if it is omitted or
ends with the name of a directory rather than a file, the HTTP server can be
configured to produce the “correct” resource to return.

Some HTTP request types (GET, POST, and HEAD) request headers, (cookies and
accept) and caching

Static and dynamic (scripted) pages. Where’s the database?

Response headers and the response body.

The concepts of incremental rendering and caching.

