

DK2

Handel-C advanced optimization

Handel-C advanced optimization

www.celoxica.com

Celoxica, the Celoxica logo and Handel-C are trademarks of Celoxica Limited.

All other products or services mentioned herein may be trademarks of their respective
owners.

Neither the whole nor any part of the information contained in, or the product described
in, this document may be adapted or reproduced in any material form except with the
prior written permission of the copyright holder.

The product described in this document is subject to continuous development and
improvement. All particulars of the product and its use contained in this document are
given by Celoxica Limited in good faith. However, all warranties implied or express,
including but not limited to implied warranties of merchantability, or fitness for purpose,
are excluded.

This document is intended only to assist the reader in the use of the product. Celoxica
Limited shall not be liable for any loss or damage arising from the use of any information
in this document, or any incorrect use of the product.

The information contained herein is subject to change without notice and is for general
guidance only.

Copyright © 2003 Celoxica Limited. All rights reserved.

Authors: SB

Document number: 1

Customer Support at http://www.celoxica.com/support/

Celoxica in Europe Celoxica in Japan Celoxica in Asia Pacific Celoxica in the Americas

T: +44 (0) 1235 863 656 T: +81 (0) 45 331 0218 T: +65 6896 4838 T: +1 800 570 7004

E: sales.emea@celoxica.com E: sales.japan@celoxica.com E: sales.apac@celoxica.com E: sales.america@celoxica.com

Handel-C advanced optimization

www.celoxica.com

Page 1

Contents

1 TUTORIAL: HANDEL-C ADVANCED OPTIMIZATION.................................... 3

2 PIPELINING.. 4

3 PIPELINES AND REPLICATORS ... 6

4 CLIENT-SERVER ARCHITECTURE... 8
4.1 CLIENT-SERVER DIVIDE EXAMPLE ... 8
4.2 FLASH MEMORY CLIENT-SERVER EXAMPLE....................................... 10

5 INDEX... 17

Handel-C advanced optimization

www.celoxica.com

Conventions
A number of conventions are used in this document. These conventions are detailed
below.

Warning Message. These messages warn you that actions may damage your hardware.

Handy Note. These messages draw your attention to crucial pieces of information.

Hexadecimal numbers will appear throughout this document. The convention used is
that of prefixing the number with '0x' in common with standard C syntax.

Sections of code or commands that you must type are given in typewriter font like this:
 void main();

Information about a type of object you must specify is given in italics like this:
 copy SourceFileName DestinationFileName

Optional elements are enclosed in square brackets like this:
 struct [type_Name]

Curly brackets around an element show that it is optional but it may be repeated any
number of times.
 string ::= "{character}"

Handel-C advanced optimization

www.celoxica.com

Page 3

1 Tutorial: Handel-C advanced
optimization

The following examples illustrate advanced methods of optimizing Handel-C code to
produce smaller and faster designs. This builds on the content of the Code Optimization
Tutorial, which should be studied first. Two main techniques are covered; pipelining and
client-server architectures. A thorough knowledge of Handel-C is assumed, and some
knowledge of digital electronics and design techniques will also be helpful.

New users are recommended to work through the following topics in order:

Pipelining (see page 4)

Pipelines and replicators (see page 6)

Client-Server architecture (see page 8)

Handel-C advanced optimization

www.celoxica.com

Page 4

2 Pipelining
A simple technique for increasing the clock rate of a Handel-C design is to split complex
operations over several cycles. However, this results in more cycles being required to
perform the operation. Pipelining splits operations up in the same way, but achieves the
same data throughput as the original circuit.

The following code illustrates a complex expression that is might result in a low clock rate
for the design it is included in:

while (1)
{
 a = (b + c) * (d + e);
}

This can be split into two operations to calculate the sums, which can be executed in
parallel, and then the following cycle the multiplication can be performed. This will result
in each line having a shallower logic depth, allowing a higher clock rate.

while (1)
{
 par
 {
 sum1 = (b + c);
 sum2 = (d + e);
 }
 a = sum1 + sum2;
}

However, the original operation took only one cycle, and the modified version takes 2
cycles. If all three lines of code are executed in parallel, a two stage pipeline will be
formed, as shown below:

Handel-C advanced optimization

www.celoxica.com

Page 5

while (1)
{
 par
 {
 /* pipeline stage 1 */
 sum1 = (b + c);
 sum2 = (d + e);

 /* pipeline stage 2 */
 a = sum1 + sum2;
 }
}

The behaviour and timing of the code is as follows:

• After the first clock cycle:

• new values for the additions are calculated and stored in sum1 and sum2.
• the value in a will be undefined, as it depends on sum1 and sum2 for its

inputs, and they were undefined at the start of the cycle.
• After the second clock cycle:

• another set of new values for the additions are calculated and stored in
sum1 and sum2.

• The multiplication has been performed, using the values of sum1 and sum2
generated in the previous clock cycle, and the result is stored in a.

The behaviour in the second cycle is then repeated in all following cycles, providing that
the data in b, c, d and e is valid on every cycle.

The result is that the block of code will be capable of running at a higher clock rate when
implemented in hardware, at the expense of results being delayed by one cycle. As long
as new inputs are presented every cycle, there will be a new result every cycle, after the
initial one cycle delay. Hence the pipeline has a latency of one cycle and a throughput of
one result per cycle.

Handel-C advanced optimization

www.celoxica.com

Page 6

3 Pipelines and replicators
Parallel and sequential replicators can be used in Handel-C to build complex program
structures quickly and allow them to be parameterized. Replicators are used in the same
way as for() loops, except that during compilation they are expanded so that all
iterations are implemented individually, and can be executed sequentially or in parallel.
So, the following code:

par (i=0; i<3; i++)
{
 a[i] = b[i];
}

expands to:

par
{
 a[0] = b[0];
 a[1] = b[1];
 a[2] = b[2];
}

If a seq had been used instead of the par, the expanded code would have been executed
sequentially instead of in parallel.

Replicators are useful for implementing algorithms which access iterate over an array or
bitwise across several variables. A good example is a pipelined multiplier where the
number of pipeline stages is equal to the width. The input data and a sum are passed
through each stage, the inputs being shifted and added to the sum as required. The code
below implements a pipelined multiplier with a user-defined data width.

Handel-C advanced optimization

www.celoxica.com

Page 7

#define WIDTH 8
unsigned WIDTH sum[WIDTH];
unsigned WIDTH a[WIDTH];
unsigned WIDTH b[WIDTH];
while(1)
{
 par
 {
 sum[0] = ((a[0][0] == 0) ? 0 : b[0]);

 par (i=1; i<=(WIDTH-1); i++)
 {
 sum[i] = sum[i - 1] + ((a[i][0] == 0) ? 0 : b[i]);

 a[i] = a[i - 1] >> 1;
 b[i] = b[i - 1] << 1;
 }
 }
}

The first line of code inside the while(1) loop sets the value of sum[0], then the
replicated par moves the shifted inputs through the a[] and b[] arrays, and the results
through the sum[] array. The final result is available in the last element of the sum[]
array, after a latency equal to the width of the input data. The workspace TutorialMult
contains a copy of this code set up for simulation, using chanin to get input data from
two files, and chanout to write data to another file.

Handel-C advanced optimization

www.celoxica.com

Page 8

4 Client-server architecture
When an operation or device driver is particularly complex or requires significant
resources when implemented in hardware, it may not be efficient to use it repeatedly in
different locations in a Handel-C program. A client-server architecture puts all the
complexity into a "server" process which runs indefinitely, and provides a "client" API
through which you can gain access to the resources of the server. The end result is
similar to using a function in Handel-C, but allows more control, as you can specify an
API and devise methods of handling multiple simultaneous requests for access to the
resource.

The following examples illustrate how to implement client-server architectures, first using
a simple divide operation, then a more complex Flash Memory driver:

Client-Server divide example (see page 8)

Flash Memory client-server example (see page 10)

4.1 Client-server divide example

A simple example of a client-server architecture can be based on a divider, which
inherently requires a large amount of hardware. If the divider is used several times
throughout a program, but never more than once simultaneously, then it can be
implemented in a server process as follows.

Create a data structure which will be used to access the server:

struct _DivideStruct
{
 unsigned 16 InputA;
 unsigned 16 InputB;
 unsigned 16 Result;
};
typedef struct _DivideStruct DivideStruct;

Now create a server process:

Handel-C advanced optimization

www.celoxica.com

Page 9

macro proc DivideServer(DividePtr)
{
 /* perform divide operations forever */
 while(1)
 {
 DividePtr->Result = DividePtr->InputA / DividePtr->InputB;
 }
}

and a client API macro:

macro proc Divide(DividePtr, a, b, ResultPtr)
{
 /* send data to the divide server */
 par
 {
 DividePtr->InputA = a;
 DividePtr->InputB = b;
 }

 /* wait one cycle for divide to be performed */
 delay;

 /* send back the result of the divide */
 *ResultPtr = DividePtr->Result;
}

Note that because the server will take a cycle to calculate the result and store it in the
data structure, a delay is inserted in the client macro to allow for this. Other methods
include using channels in the data structure to transfer data in and out of the server, or
using a shift register filled with "valid" bits in the server, so the client macro can tell
when the result is valid.

The server does not exit, so should be run in parallel with the main program, and the
client macro can be called as many times as required (sequentially) without imposing
large hardware overheads. If more than one divide needed to be carried out in parallel it
is possible to run two servers, and explicitly call them using the client macro in parallel.
For this to operate correctly, two differently named data structures must be used and
passed to the respective server and client macros.

The TutorialClientServer workspace contains two projects, the first using normal divide
operators, and the second using the client-server architecture described above. Compile
them both for EDIF output, with the Technology Mapper and Logic Estimator enabled, and
compare the output. The client-server version takes significantly less hardware.

Handel-C advanced optimization

www.celoxica.com

Page 10

4.2 Flash memory client-server example

The operation of flash memory is more complicated than asynchronous RAM. It is
organized into blocks of data. An entire block must be erased before any locations within
it can be programmed.

This example is based on the Intel flash memory part 28F640J3A, which has a capacity of
64 Mbits, organized as 64 blocks. You can obtain the data sheet for this part from
http://developer.intel.com.

The 28F640J3A has an internal state machine that you must program to perform device
operations. The device has the following connections:

• 23 bit address bus (input)

• 16 bit data bus (bi-directional)

• chip enable pins (input)

• reset pin (input)

• output enable pin (input)

• write enable pin (input)

• status pin (output)

• byte enable pin (input)

The device can operate in 16 bit data or 8 bit data mode. You select the mode using the
byte enable input. In 16 bit mode the Least Significant Bit (LSB) of the address bus is
discarded. This example uses the device in 16 bit mode so the byte enable is deactivated
by wiring high (it is active low) and only the most 22 most significant bits of the address
bus are used. Each block inside the flash device contains 128 Kb. In 16 bit mode the
blocks are 64 Kwords long. Of the total 23 address bits, the block address is given by the
most significant 6 bits and the address within a block is given by the least significant 17
bits.

The API requires functions for reading, writing and erasing data from the Flash device.
Although the device also features operations for querying device identity and locking
blocks of data (to prevent them from being erased) these are not essential for the
operation of the device.

This example implements the interface translation code that converts API functions into
device operations using a server process that runs in parallel with an application. The API
functions act as clients to the server. The server is implemented using a non-terminating
loop inside a macro procedure. The API functions and the server use shared variables
and a channel to communicate. These are collected together inside a structure and
passed as a parameter to the API functions and the server.

Here are the prototypes for the read, write and erase API functions:

Handel-C advanced optimization

www.celoxica.com

Page 11

/*
 * Read datum from specified Address in flash into (*DataPtr)
 * Parameters: FlashPtr : input of type (Flash)*
 * Address : input of type (unsigned 22)
 * DataPtr : input of type (unsigned 16)*
 */
extern macro proc FlashReadWord (FlashPtr, Address, DataPtr);

/*
 * Write a datum from Data into Flash at specified Address
 * Parameters: FlashPtr : input of type (Flash)*
 * Address : input of type (unsigned 22)
 * Data : input of type (unsigned 16)
 */
extern macro proc FlashWriteWord (FlashPtr, Address, Data);

/*
 * Erase data from the block in the Flash referenced by BlockNumber
 * Parameters: FlashPtr : input of type (Flash)*
 * BlockNumber : input of type (unsigned 6)
 */
extern macro proc FlashEraseBlock (FlashPtr, BlockNumber);

The macro procedure containing the server has the following prototype:

/*
 * Run the Flash device driver server
 * Parameters: FlashPtr : input of type (Flash)*
 * ClockRate : clock rate in Hz
 */
extern macro proc FlashRun (FlashPtr, ClockRate);

The structure that contains variables shared between the server and API functions also
contains expressions for the interfaces to the device. The advantage of this is that the
same API functions and server code can be used to control multiple 28F640J3A flash
memory devices at the same time. A different copy of the structure is created for each
device and then the server is run multiple times in parallel with the application, once for
each device. The structure has the following definition:

Handel-C advanced optimization

www.celoxica.com

Page 12

struct _Flash
{
 interface bus_ts (unsigned DataIn) *DataBus
 (unsigned DataOut, unsigned OE);
 interface bus_clock_in (unsigned Input) *StatusBus ();
 unsigned 1 CEn;
 unsigned 1 WEn;
 unsigned 1 OEn;
 unsigned 1 DataOE;
 unsigned 22 Addr;
 unsigned 16 Data;
 unsigned 1 ByteEnable;
 unsigned 22 APIAddress;
 unsigned 16 APIData;
 unsigned 6 APIBlockNumber;
 chan unsigned 3 APICommand;
};
typedef struct _Flash Flash;

The declaration and the definition of the structure type are placed in separate files to
indicate that the structure should be treated as opaque. Putting expressions for the
interfaces inside the Flash structure separates the interface definitions that connect to
the flash device from the implementation of the device driver. The interfaces will now be
defined in the context of an application or PSL that uses the device driver to control a
specific 28F640J3A flash memory device.

The members of the Flash structure each have the following purpose:

DataBus Connects the server to the input expression of the flash data bus
interface

StatusBus Connects the server to the input expression of the flash status bus
interface

CEn Connects the server to the output expression on the flash chip
enable pin

WEn Connects the server to the output expression on the flash write
enable pin

OEn Connects the server to the output expression on the flash output
enable pin

DataOE Connects the server to the output enable expression on the flash
data bus (enables output from the FPGA/PLD to the device)

Handel-C advanced optimization

www.celoxica.com

Page 13

Addr Connects the server to the output expression on the flash address
bus

Data Connects the server to the output expression on the flash data bus

ByteEnable Connects the server to the output expression on the flash byte
enable pin

APIAddress Shared between the API clients and server, used to communicate
the address for a read or write operation

APIData Shared between the API clients and server, used to communicate
the Data for a read or write operation

APIBlockNumber Shared between the API clients and server, used to communicate
the block number for a block erase operation

APICommand Used by the API clients to send commands to the server

A single instance of the Flash structure can be declared, initialized and connected to pins
by a call to the FlashInit() macro, which is declared as follows:

extern macro proc FlashInit (FlashPtrPtr,
 FlashAddrPins,
 FlashDataPins,
 FlashChipEnablePins,
 FlashOutputEnablePin,
 FlashWriteEnablePin,
 FlashStatusPin,
 FlashByteEnablePin,
 FlashEraseEnablePin);

The APICommand channel can take any of three values equivalent to the different
operations, these values are defined using the following macro expressions.

static macro expr FlashAPICommandReadWord = 1<<0;
static macro expr FlashAPICommandWriteWord = 1<<1;
static macro expr FlashAPICommandEraseBlock = 1<<2;

The commands are decoded inside the server with a switch-case construct. Using the
series x=2n to generate values for each branch assists the DK compiler in optimizing
away branches that are never used. This is desirable since a programmer may not use all
of the available operations in an application.

The server process has the following skeleton structure:

Handel-C advanced optimization

www.celoxica.com

Page 14

macro proc FlashRun (FlashPtr, ClockRate)
{
 // Initialization sequence
 unsigned 3 Command;

 do
 {
 FlashPtr->APICommand ? Command;
 switch (Command)
 {
 case FlashAPICmdRead:
 // Read sequence goes here
 FlashPtr->APICommand ! 0;
 break;
 case FlashAPICmdWrite:
 // Write sequence goes here
 break;
 case FlashAPICmdErase:
 // Erase sequence goes here
 break;
 default:
 delay;
 break;
 }
 }
 while (1);
}

The full implementation of the server can be found in the TutorialFlashRAM workspace.

The API functions have the following implementation:

Handel-C advanced optimization

www.celoxica.com

Page 15

macro proc FlashReadWord (FlashPtr, Address, DataPtr)
{
 static unsigned 3 Dummy;

 par
 {
 FlashPtr->APICommand ! FlashAPICommandReadWord;
 FlashPtr->APIAddress = Address;
 }
 FlashPtr->APICommand ? Dummy;
 *DataPtr = FlashPtr->APIData;
}

macro proc FlashWriteWord (FlashPtr, Address, Data)
{
 par
 {
 FlashPtr->APICommand ! FlashAPICommandWriteWord;
 FlashPtr->APIAddress = Address;
 FlashPtr->APIData = Data;
 }
}

macro proc FlashEraseBlock (FlashPtr, BlockNumber)
{
 par
 {
 FlashPtr->APICommand ! FlashAPICommandEraseBlock;
 FlashPtr->APIBlockNumber = BlockNumber;
 }
}

When the flash device driver is used, the application programmer must:

• Declare a variable of type (Flash *)

• Call FlashInit() with appropriate parameters to build interfaces to the
correct pins and to create and initialize a Flash structure.

• Run the FlashRun() server process in parallel with the application

Alternatively, the calls can be put inside a PSL that is configured for a specific platform.

Handel-C advanced optimization

www.celoxica.com

Page 16

Handel-C advanced optimization

www.celoxica.com

Page 17

5 Index
C

client-server 8

F

flash memory.................................. 10

O

optimization...................................... 3

P

pipeline .. 4, 6

pipelining 4, 6

	Document number: 1
	Tutorial: Handel-C advanced optimization
	Pipelining
	Pipelines and replicators
	Client-server architecture
	Client-server divide example
	Flash memory client-server example

	Index

