

DK2

Handel-C VGA graphics output

Handel-C VGA graphics output

www.celoxica.com

Celoxica, the Celoxica logo and Handel-C are trademarks of Celoxica Limited.

All other products or services mentioned herein may be trademarks of their respective
owners.

Neither the whole nor any part of the information contained in, or the product described
in, this document may be adapted or reproduced in any material form except with the
prior written permission of the copyright holder.

The product described in this document is subject to continuous development and
improvement. All particulars of the product and its use contained in this document are
given by Celoxica Limited in good faith. However, all warranties implied or express,
including but not limited to implied warranties of merchantability, or fitness for purpose,
are excluded.

This document is intended only to assist the reader in the use of the product. Celoxica
Limited shall not be liable for any loss or damage arising from the use of any information
in this document, or any incorrect use of the product.

The information contained herein is subject to change without notice and is for general
guidance only.

Copyright © 2003 Celoxica Limited. All rights reserved.

Authors: SB

Document number: 1

Customer Support at http://www.celoxica.com/support/

Celoxica in Europe Celoxica in Japan Celoxica in Asia Pacific Celoxica in the Americas

T: +44 (0) 1235 863 656 T: +81 (0) 45 331 0218 T: +65 6896 4838 T: +1 800 570 7004

E: sales.emea@celoxica.com E: sales.japan@celoxica.com E: sales.apac@celoxica.com E: sales.america@celoxica.com

Handel-C VGA graphics output

www.celoxica.com

Page 1

Contents

1 TUTORIAL: HANDEL-C AND VGA GRAPHICS OUTPUT................................ 3

2 GENERATING VGA GRAPHICS ... 4

3 RESPONDING TO USER INPUT.. 7

4 ADDING MOUSE INPUT .. 12

5 INDEX... 17

Handel-C VGA graphics output

www.celoxica.com

Conventions
A number of conventions are used in this document. These conventions are detailed
below.

Warning Message. These messages warn you that actions may damage your hardware.

Handy Note. These messages draw your attention to crucial pieces of information.

Hexadecimal numbers will appear throughout this document. The convention used is
that of prefixing the number with '0x' in common with standard C syntax.

Sections of code or commands that you must type are given in typewriter font like this:
 void main();

Information about a type of object you must specify is given in italics like this:
 copy SourceFileName DestinationFileName

Optional elements are enclosed in square brackets like this:
 struct [type_Name]

Curly brackets around an element show that it is optional but it may be repeated any
number of times.
 string ::= "{character}"

Handel-C VGA graphics output

www.celoxica.com

Page 3

1 Tutorial: Handel-C and VGA graphics
output

The following examples illustrate how to use Handel-C to generate simple VGA graphics
and respond to user input. Three examples are used, each building on the previous one
to add new features. The TutorialVGA workspace contains the code for each of the
examples. A basic knowledge of Handel-C is assumed, and some knowledge of digital
electronics and design techniques will also be helpful.

New users are recommended to work through the following topics in order:

Generating VGA graphics (see page 4)

Responding to user input (see page 7)

Adding mouse input (see page 12)

Handel-C VGA graphics output

www.celoxica.com

Page 4

2 Generating VGA graphics
The GraphicsDemo1 project in the TutorialVGA workspace contains the code for this example.
The first step in generating VGA graphics using DK and Handel-C is to set up a PAL
workspace for one or more targets. This has already been done in the GraphicsDemo1
project for Simulation and RC200, but the procedure is explained fully in Setting up a PAL
workspace.

In the main function, a macro is defined which returns the PalHandle representing the
optimal video mode for the chosen clock rate, and the version of PAL and the resources
required are specified:

macro expr VideoOut = PalVideoOutOptimalCT (ClockRate);
PalVersionRequire (1, 0);
PalVideoOutRequire (1);

The next step is to run the video driver in parallel with the code which will generate the
graphics to be displayed, in this case a macro called RunOutput. Note that the video
output must also be enabled. The ClockRate macro should be defined to return the
actual clock rate of the system. In GraphicsDemo1 the clock rate is
PAL_ACTUAL_CLOCK_RATE.

par
{
 PalVideoOutRun (VideoOut, ClockRate);
 seq
 {
 PalVideoOutEnable (VideoOut);
 RunOutput (VideoOut);
 }
}

In order to display graphics, the RunOutput macro will need to know what the current
VGA scan position is and have some predefined colours to write to the screen. PAL uses
24-bit RGB colour format, which is then reduced to the colour depth supported by the
target device. To determine the current VGA scan position, a pointer to the video
PalHandle is passed into RunOutput, and the standard PAL video macros are used. The
code sample below shows the definitions of the colours and two macro expressions to
give quick access to the current VGA scan position.

Handel-C VGA graphics output

www.celoxica.com

Page 5

macro expr White = 0xFFFFFF;
macro expr Black = 0x000000;
macro expr Red = 0xFF0000;
macro expr Green = 0x00FF00;
macro expr Blue = 0x0000FF;

macro expr ScanX = PalVideoOutGetX (VideoOut);
macro expr ScanY = PalVideoOutGetY (VideoOut);

Having defined these simple macro expressions, it is now possible to make the
RunOutput macro display graphics on a VGA output. The example in GraphicsDemo1 draws a
white grid on a black background. This is achieved by taking the lowest five bits of ScanX
and ScanY, and drawing a white pixel whenever these bits are equal to zero. All other
pixels are drawn as black, resulting in a grid of white lines one pixel wide, and spaced by
32 pixels vertically and horizontally. The code to generate this grid is shown below, and a
screenshot of the output in simulation is shown in the figure below. Note that the code to
generate the grid graphics is inside a while(1) loop, so it will run forever, and it also
executes in a single cycle, as this is the rate at which pixels must be sent out to the VGA
display.

Handel-C VGA graphics output

www.celoxica.com

Page 6

while (1)
{
 if ((ScanY <- 5 == 0) || (ScanX <- 5 == 0))
 PalVideoOutWrite (VideoOut, White);
 else
 PalVideoOutWrite (VideoOut, Black);
}

PALSIM RUNNING GRAPHICSDEMO1

To run the example yourself, open the TutorialVGA workspace, set GraphicsDemo1 as the
active project, set the Active Configuration to Sim, then build and run the project. For a
Celoxica RC200 board with a VGA monitor connected, set the Active Configuration to
RC200, rebuild, then use the Place and Route tools to generate a bitfile to download to
the board.

Handel-C VGA graphics output

www.celoxica.com

Page 7

3 Responding to user input
The GraphicsDemo2 project in the TutorialVGA workspace contains the code for this example.
This example takes GraphicsDemo1, which drew a white grid on the screen, and adds a red
box, drawn underneath the white grid. The size of the box can be varied using the
switches in the PalSim Virtual Platform and on the Celoxica RC200 board.

To enable the use of switches for user input, they should be required at the start of the
program, at the same time as requesting video output and PAL version. In this case a
minimum of two switches are requested, as shown below. Switches do not require a Run
macro (like the video output does), as they are simple devices and can be accessed
directly.

PalVersionRequire (1, 0);
PalVideoOutRequire (1);
PalSwitchRequire (2);

The RunOutput macro must first be modified to draw a box as well as the white grid, so
some additional macros are defined to help in this task, as shown below. MaxX and MaxY
return the maximum number of pixels visible, XWidth and YWidth return the bit width
required to hold the X and Y VGA scan variables, and XPos and YPos are used to mark
the center of the box which will be displayed.

macro expr MaxX = PalVideoOutGetVisibleXCT (VideoOut, ClockRate);
macro expr MaxY = PalVideoOutGetVisibleYCT (VideoOut);
macro expr XWidth = PalVideoOutGetXWidthCT (VideoOut);
macro expr YWidth = PalVideoOutGetYWidthCT (VideoOut);
macro expr XPos = MaxX/2;
macro expr YPos = MaxY/2;

As the size of the box to be drawn will be changed according to user input, it needs to be
a variable with an initial value assigned:

static unsigned YWidth BoxSize = 20;

To actually draw the box, the display output code must be changed to detect when the
VGA scan position is within the box region:

Handel-C VGA graphics output

www.celoxica.com

Page 8

while (1)
{
 if ((ScanY <- 5 == 0) || (ScanX <- 5 == 0))
 PalVideoOutWrite (VideoOut, White);
 else if((ScanX > (Xpos - BoxSize)) && (ScanX < (Xpos + BoxSize)) &&
 (ScanY > (YPos - BoxSize)) && (ScanY < (YPos + BoxSize)))
 PalVideoOutWrite (VideoOut, Red);
 else
 PalVideoOutWrite (VideoOut, Black);
}

In parallel with the while(1) loop running the display output, there must be another
while(1) loop which reads the switches and modifies the box size to account for any
user input detected. The size of the box should be limited so that it does not go below
zero, and does not go above the maximum visible number of pixels in the Y direction.
This is necessary for the display output code shown to work correctly, as attempting to
store a negative result in an unsigned number results in a large (incorrect) positive
number. The code below shows how the user interaction is performed. Two calls are
made in parallel to PalSwitchRead to get data from the two switches, and at the same
time the data from the switches is checked and the box size updated. As Handel-C only
updates variables at the end of a clock cycle, data read from the switches will not be
checked until the following cycle, but this will not have any impact on the operation of
this example.

Handel-C VGA graphics output

www.celoxica.com

Page 9

while (1)
{
 par
 {
 PalSwitchRead (PalSwitchCT (0), &SwitchData[0]);
 PalSwitchRead (PalSwitchCT (1), &SwitchData[1]);

 if (SwitchData[0] == 1)
 {
 if (BoxSize != (MaxY / 2))
 {
 BoxSize++;
 Sleep (20);
 }
 else
 delay;
 }
 else if (SwitchData[1] == 1)
 {
 if (BoxSize != 0)
 {
 BoxSize--;
 Sleep (20);
 }
 else
 delay;
 }
 else
 delay;
 }
}

The calls to the Sleep() macro are required to avoid the box size changing too quickly,
so that you can observe it happening. In this case a sleep period of 20ms is used,
limiting the rate of change to 50 pixels per second. The code for the Sleep() macro is
shown below, including a notional clock rate of 10000Hz for simulation.

Handel-C VGA graphics output

www.celoxica.com

Page 10

static macro proc Sleep (Milliseconds)
{
#ifdef USE_SIM
 macro expr Cycles = (10000 * Milliseconds) / 1000;
#else
 macro expr Cycles = (ClockRate * Milliseconds) / 1000;
#endif
 unsigned (log2ceil (Cycles)) Count;

 Count = 0;
 do
 {
 Count++;
 }
 while (Count != Cycles - 1);
}

Handel-C VGA graphics output

www.celoxica.com

Page 11

The figure below shows the GraphicsDemo2 project running in simulation on the PalSim
Virtual Platform. To run the example yourself, open the TutorialVGA workspace, set
GraphicsDemo2 as the active project, set the Active Configuration to Sim, then build and
run the project. For a Celoxica RC200 board with a VGA monitor connected, set the
Active Configuration to RC200, rebuild, then use the Place and Route tools to generate a
bitfile to download to the board.

PALSIM RUNNING GRAPHICSDEMO2

Handel-C VGA graphics output

www.celoxica.com

Page 12

4 Adding mouse input
The GraphicsDemo3 project in the TutorialVGA workspace contains the code for this example.
This example takes GraphicsDemo2, allows the red box drawn on the screen to be moved
around using a mouse and changes the colour of the box when the mouse buttons are
pressed.

To use the mouse under PAL, the pal_mouse.hch header must be included and the
pal_mouse.hcl library added to the linker settings for both Sim and RC200 targets. A
pointer of type PalMouse must be created, and a PS2 port will be required to connect the
mouse to. It is also useful to create a macro expression to provide quick access to the
PS2 port, as shown in the code below:

macro expr PS2 = PalPS2PortCT (0);
PalMouse *MousePtr;
PalPS2PortRequire (1);

The mouse driver must be run and enabled in parallel with the video driver and the
RunOutput macro, the limits on the cursor position should be set and wrapping (what
happens to the cursor at the edge of the screen) turned off, as show below. MaxX and
MaxY are macro expressions returning the number of visible pixels.

Handel-C VGA graphics output

www.celoxica.com

Page 13

par
{
 PalVideoOutRun (VideoOut, ClockRate);
 PalMouseRun (&MousePtr, PS2, ClockRate);

 seq
 {
 par
 {
 PalVideoOutEnable (VideoOut);
 PalMouseEnable (MousePtr);
 }
 par
 {
 PalMouseSetMaxX (MousePtr, MaxX);
 PalMouseSetMaxY (MousePtr, MaxY);
 PalMouseSetWrap (MousePtr, 0);
 }

 RunOutput (VideoOut, MousePtr, ClockRate);
 }
}

The final code to add for this example takes the mouse input and uses it to control the
position and colour of the box displayed on the VGA output. This code is in the
RunOutput macro, running in parallel with the code reading the switches and updating
the box size. The mouse coordinates are copied into the box position every cycle, if the
left mouse button is pressed the 24 bit box colour is incremented, and if the right mouse
button is pressed, the colour is reset to red. Two new macro expressions, MouseX and
MouseY are created to provide easy access to the current mouse coordinates, and their
use can be seen in the code below:

Handel-C VGA graphics output

www.celoxica.com

Page 14

while (1)
{
 par
 {
 XPos = MouseX;
 YPos = MouseY;

 if (MouseL == 1)
 BoxColour++;
 else
 delay;

 if (MouseR == 1)
 BoxColour = Red;
 else
 delay;
 }
}

The code for updating the box position and colour can not go in the same while(1) loop
as the code which reads the switches, as it needs to execute every cycle, and the switch
code includes calls to Sleep(). Instead, separate while(1) loops are run in parallel
within the RunOutput macro, allowing each to take different numbers of cycles
simultaneously.

Handel-C VGA graphics output

www.celoxica.com

Page 15

The figure below shows the GraphicsDemo3 project running in simulation on the PalSim
Virtual Platform. To run the example yourself, open the TutorialVGA workspace, set
GraphicsDemo3 as the active project, set the Active Configuration to Sim, then build and
run the project. For a Celoxica RC200 board with a VGA monitor connected, set the
Active Configuration to RC200, rebuild, then use the Place and Route tools to generate a
bitfile to download to the board.

PALSIM RUNNING GRAPHICSDEMO3

Handel-C VGA graphics output

www.celoxica.com

Page 17

5 Index
G

graphics ... 3

M

mouse.. 12

P

PALMouse....................................... 12

PALSim .. 3

V

VGA graphics 3

Virtual Platform 3

	Document number: 1
	Tutorial: Handel-C and VGA graphics output
	Generating VGA graphics
	Responding to user input
	Adding mouse input
	Index

