
September 29, 2003

Lab Access
No complaints received …

Up-Down Counter Design
Handel-C Basics continued

Up-Down Counter Design

Simpler version: Count button presses
PalReadSwitch(handle, pointer)

Debouncing not an issue
Simulated pushbuttons vs. switches

Infinite recursion warnings?
Need to count in binary and convert to
BCD.

Or count in BCD
Sample code: up_down_counter.hcc

http://babbage.cs.qc.edu/courses/cs345/2003_09/Presentations/Html/up_down_counter.hcc.pdf

Up-Down Timer Design

Timing Resolution Issues
Suggest State Machine Design
Sample Code Walkthrough

Timer Resolution Issues

To what precision will one second intervals be
kept?

We already have a msec_delay() macro.
Stopwatches are accurate to 0.01 sec.

How are button presses synchronized with
the one second interval counter?
What happens to an interval in progress
when the timer is stopped and restarted?

Reset to zero
Continue last interval

Suggest State Machine Design

Need to keep track of previous and current
states of buttons to detect edges.
The C enum mechanism is a good for state
variables because the state names can be
used as constants.

typedef lets you use enums as data types.
Switch statements can be translated into
hardware decoders if there is a case for every
possible value of the test variable, such as
when the test variable is an enum.

Especially when there are 2n cases.

Language Basics continued

Bit Operators
Macros

Bit Operators

Conventional C Bitwise Operators
AND (&)
OR (|)
XOR (^)
Shift (<< and >>)

Handel-C Additions
Take ()
Drop (\\)
Concatenate (@)
Select ([m:n])

Macros

Conventional C Macros
Preprocessor Directives

#define PRECISION 5
#define add(x,y) (x) + (y)
Note spacing, lack of semicolons, and how to
handle multi-line definitions

Handel-C Macros
Macro Expressions
Macro Procedures

Macro Expressions

macro expr precision = 5;
macro expr add(x,y) = (x)+(y);
Can be recursive

macro expr copy(x, n) =
select(n==1, x, (x @ copy(x, n-1)));

macro expr extend(y, m) =
copy(y[width(y)-1],m-width(y)) @ y;

The adjust() Macro Expression

Generate a value whose width matches the
size of another a variable

Part of stdlib.hch
Language Reference Manual pg. 125

macro expr adjust(x, n) =
select(width(x) < n, (0@x),(x n));

a, b, c with widths of 4, 5, 6
b = a; b = c;

Contrast to conditional operator (? :)

Macro Procedures

macro proc fun(arg1, arg2) { … }
Equivalent to an inline function
No compile-time type checking of arguments.
“Macro procs have become largely obsolete by inline functions but not by
ordinary (reused) functions. Functions provide for more portable code and
are the preferred method of writing in Handel-C. Macro procs are included
in the language primarily for compatibility with earlier versions of the
language. Macro procs may provide an area saving for small blocks of code
and do allow for more extensive parameterization of the code. For example,
macro procs are very useful for functions that will work on different width
arguments.
“Macro procs share datapath if possible, but duplicate control path for each
call. Function calls share control path and datapath. In some cases the
overhead of a function call may be larger than the duplicated control logic;
for example when the subroutine has a small amount of control logic and is
only used a few times.” (Handel-C FAQ, page 4)

http://babbage.cs.qc.edu/courses/cs345/Manuals/Handel-C_FAQ.pdf

	September 29, 2003
	Up-Down Counter Design
	Up-Down Timer Design
	Timer Resolution Issues
	Suggest State Machine Design
	Language Basics continued
	Bit Operators
	Macros
	Macro Expressions
	The adjust() Macro Expression
	Macro Procedures

