
CSCI 345 Laboratory III
September 24, 2003

Objective
This laboratory session continues with your introduction to project development for the
RC200E using the DK software from Celoxica. In this session, you are to set up and
develop an application that works with the RC200 switches, LEDs, and seven segment
displays using Platform Abstraction Layer (PAL) macros to avoid the need to do
interface-level I/O.

Although it would be easier to do this lab by cutting and pasting from sample code
available in the Celoxica\PDK directory, this lab session will guide you through the
essential elements of project setup step-by-step. After this lab, you can cut and paste all
you want.

Once again, you are to work in groups of two or three during the laboratory session. Do
the work for the session in one person’s account, and then make the directory tree
containing the laboratory workspace available to the other members of your team to copy.

Project Specifications
The program you are going to develop is an up-down counter. When the bit file is
loaded into the RC-200, the seven segment displays are to count in decimal either
up towards 99 or down towards 00. Pressing one pushbutton will cause the
counter to count up, pressing the other will cause the counter to count down, and
pressing neither is to leave the counter unchanged. You get to decide what
happens if both buttons are pressed at the same time. When counting, the counter
must step at exactly one-second intervals. We will simulate the code before
downloading it.

Lab Activities
1. Create a Workspace and Add a Project/File to It

2. Configure the Project for Simulation

3. Use PAL Code to Turn the Simulated LED on/off

4. Configure the Project for Downloading

5. Make the Hardware LED Blink at 1 Hz

6. Build the Up Down Counter

7. Submit a Report of Your Lab Activities

Create a Workspace and Add a Project/File to It
If you haven’t done so already, click “My Documents” on the desktop, and create a new
folder named “My Projects.” It will be on the same level as ‘My Pictures,” My Music,”
etc. Note the path to your “My Projects” directory in the Address bar of Windows
Explorer.

Last updated 9/24/2003 8:35 PM

 CSCI Laboratory III Page 2 of 5

September 24, 2003

Start DK, select File New, and choose the Workspace tab on the dialog box that comes
up. Use “Laboratory III” as the Workspace name. For the Location, browse to your “My
Projects” directory at the address you noted in the previous paragraph.

Use File New again, but this time, select the Project tab. Name the new project
“Blinking LED,” select Xilinx Virtex II in the left-hand pane, and be sure the project is
part of the Workspace you just created. Now use File New again to add a Handel-C
source file named “blinking_led.hcc” to the project. If you haven’t done so already,
select Tools Options and go to the Tabs tab. Set it so the editor substitutes spaces for
tabs. (A Vickery pet peeve.) You might also want to set the tab stop width to 2 instead
of 4, and be sure auto-indent is checked. Put a comment line containing the file name at
the beginning of blinking_led.cc, and put a comment block at the beginning of the file
that describes the program briefly and that lists the names of the people in your lab group
as authors.

Configure the Project for Simulation
The DK software comes with some preconfigured build configurations. We will use the
“Debug” configuration for simulation and the “EDIF” configuration for generating the
.bit file for downloading. We will have to modify both configurations to get the project
to build correctly. A requirement for the lab is that the same Handel-C source code is to
be used for both configurations without change, so we will make the changes needed for
simulation while keeping in mind that they must be compatible with the build
configuration for downloading.

For simulation, we will define the USE_SIM preprocessor directive. But rather than put
the #define statement in the source code, as we did last week, we’ll predefine it so we
can test it in the source code using a #ifdef statement. From Project Settings, be sure
the Debug configuration is selected, and add USE_SIM to the preprocessor symbols.
Write code before your main() function that sets the PAL_TARGET_CLOCK_RATE to
1000000 (1,000,000) if USE_SIM is defined. Write your code to #include
pal_master.hch (unconditionally). Define a one-bit variable and write a main() function
that endlessly alternates between turning the bit on and off. You will need to link to
sim.hcl and pal_sim.hcl in order to generate a simulation of your program, so add those
two libraries on the Linker tab of the settings for the Debug build configuration. (Be sure
your Tools Options Directories tab has C:\Program
Files\Celoxica\PDK\Hardware\Include for include files, and C:\Program
Files\Celoxica\PDK\Hardware\Lib for libraries. You also need to add C:\Program
Files\Celoxica\PDK\Software\Lib\PalSim.lib to the Additional C/C++ Modules list on
the Linker tab of the Simulation build settings.

Simulate the program and verify that the bit turns on and off on alternate clock steps.

Use PAL Code to Turn the Simulated LED on/off
To use the PAL, you use macros that are documented in the PAL API Reference Manual.

In your main() function you need to do a couple of tests at the beginning, one is to call
PalVersionRequire major, minor) (page 6). This project will work with any PAL

Last updated 9/24/2003 8:35 PM

http://babbage.cs.qc.edu/courses/cs345/Manuals/PAL_API_Reference_Manual.pdf

 CSCI Laboratory III Page 3 of 5

September 24, 2003

version, but you can specify a major version of 1 and a minor version of 2 to be sure you
are not working with an old version. Be sure you capitalize the method name properly.
You also need to make sure that your target platform has LEDs that you can access
through the PAL. Use the PalLEDRequire(num) method to do this. You need only one
LED for now, but you can experiment to see what happens if you specify more than 8
when building for simulation if you want to.

These two method calls do not generate any run-time code, but they look syntactically
like function calls, and must therefore be placed after all variable declarations in your
main() function. (Unlike C++ and Java, C and Handel-C require all local variables to be
declared before any executable statements in a function.)

To turn the LED on or off, you use the PalLEDWrite(handle, value) method (page 12).
The handle argument is an identifier for the LED you want to light up. The PAL lets you
obtain a valid handle for a LED at compile time using a macro named PalLEDCT(index),
where index is a number between 0 and one less than the argument you passed to
PalLEDRequire(). With only one LED required, your options are pretty limited for the
value of this argument. The “CT” at the end of the macro name indicates that it is to be
evaluated at “compile time” rather at run time. There is also a run-time version that will
work, but the compile time version doesn’t generate any hardware.

Simulate your program and verify that the LED turns on and off. Don’t bother to try
getting it to cycle exactly once a second yet.

Configure the Project for Downloading
First of all, the simulated and downloaded versions of the program will need two
different clock rates. In the build configuration for EDIF, define the preprocessor symbol
USE_RC200, and in your code #define PAL_TARGET_CLOCK_RATE to 1 (1 Hz) if
this symbol is true. Be sure the Chip tab has the correct part number
(XC2V1000-4FG456), and put both the rc200e.hcl and pal_rc200e.hcl libraries in the list
of object modules of the Linker tab. Finally, you need to configure the commands for
generating the .bit file, which is done on the Build Commands tab. The first command is
to change directory to the EDIF subdirectory for the project (cd EDIF), and the second
command is to use the DOS call command to invoke the edifmake_rc200 batch file. The
last argument on call command line is the name of the projects, which has to be put in
quotes because there is a space in the name, Blinking LED.

On the Build Commands tab, you also need to specify the directory where the output files
will be placed. This directory should be named EDIF, to match the name of the
configuration, and gets entered by selecting “Outputs” instead of “Commands” in the
View List Box on the Build tab and just typing the directory name in the text box.

Build your program using the EDIF configuration and fix the problem due to the target
clock rate being too low for the RC-200. You should also still be able to build and
simulate your code, but there is no point in downloading the .bit file yet because the LED
will blink way to fast to see.

Last updated 9/24/2003 8:35 PM

 CSCI Laboratory III Page 4 of 5

September 24, 2003

Make the Hardware LED Blink at 1 Hz
You need to introduce a delay in your main loop so the LED doesn’t blink too fast. The
delay depends on the clock rate for main(), which in turn depends on whether the code is
being built for simulation or for download. The most general-purpose technique would
be to call a function that delays the code for an amount of time passed as a parameter to
the function. But function calls take place at run-time and take clock cycles to make the
call and return. Instead, we’ll use a macro to generate the necessary delay at compile
time. Handel-C provides a way of writing compile-time macros that look like
procedures, called “macro procs.” (Macro procs are described starting on page 131 of the
Handel-C Language Reference Manual.) Write a macro proc named msec_delay() that
accepts a number of milliseconds as its argument. Because this is a macro, you don’t
declare the type of the argument anywhere:

macro proc msec_delay(msec) { … }
Call this macro proc with an argument of 500 every time the LED turns on or off.
Leaving the macro proc body empty for now (replace the “…” above with nothing), be
sure you can compile your code for both simulation and download.

You can find examples of code like msec_delay() throughout the sample code provided
by Celoxica. Here, we’ll write our own version to see what’s going on. The first thing to
note is that the header file pal_master.hch will #define a symbol
PAL_ACTUAL_CLOCK_RATE to be the, uh, actual clock rate that will drive your
main() function. This clock rate will most likely be a little different from the target clock
rate because there may not be a way to divide any of the hardware clocks on the RC200
to exactly the rate you asked for.

What you want to do is to have a loop inside your macro proc that delays the code for the
proper number of clock cycles to get the number of milliseconds needed. We know that
incrementing or decrementing a register takes one clock cycle:

while (count > 0) count--;
There are two things that need to be done: one is to assign a value to count based on the
actual clock rate and on the number of milliseconds passed as a parameter to the macro
proc. This value can be determined at compile time provided the millisecond parameter
is a constant (like the number of milliseconds in half a second). You can use a Handel-C
macro expression (Macro expressions are described startinf on page 123 of the Handel-C
Language Manual.) to do this:

macro expr cycles = f(PAL_ACTUAL_CLOCK_RATE, msec);
It’s an exercise for you to figure out what code to write on the right side of the equal sign.
That is to figure out what expression to write in place of what looks like a function call
above.

Notice that the macro expression defines a value for the symbol cycles, which is not the
variable count. Cycles is a constant determined at compile time when macro substitution
takes place, but count is a register that has to be loaded and decremented at run time.
And how many bits must there be in this register? You want just enough bits to hold the
value of cycles and no more in order to make efficient use of the hardware. The solution

Last updated 9/24/2003 8:35 PM

 CSCI Laboratory III Page 5 of 5

September 24, 2003

Last updated 9/24/2003 8:35 PM

is to use one of Handel-C’s standard library functions, log2ceil(arg), which tells how
many bits are needed to represent the value of arg. A piece of overhead is that you need
to put the reference to this function inside parentheses to get your register declaration to
compile. For example:

int (log2ceil(6)) x;
would declare x to be a 3 bit integer.

This function is declared in the header file stdlib.hch, and you will need to add the
standard library, stdlib.hcl to the linker tab for both the simulation and EDIF build
configurations.
Compile your code for both simulation and download, and adjust the target clock rates
for both so the LED blinks exactly once per second.

Build the Up Down Counter
Using your blinking LED project as a model, implement the Up Down Counter project.

Submit a Report of Your Lab Activities
Submit copies of blinking_led.hcc and up_down_counter.hcc by email by Wednesday
October 1.

	Objective
	Project Specifications

	Lab Activities
	Create a Workspace and Add a Project/File to It
	Configure the Project for Simulation
	Use PAL Code to Turn the Simulated LED on/off
	Configure the Project for Downloading
	Make the Hardware LED Blink at 1 Hz
	Build the Up Down Counter
	Submit a Report of Your Lab Activities

