
CSCI 345 Laboratory II
September 17, 2003

Revised 9/19/03

Objective
The goal of this laboratory session is to familiarize you with the DK development
environment by exploring what actually happens when you set up a workspace and a
project, and to see what commands are actually executed when you build a project.

Lab Activities
1. Create a Workspace and Add a Project/File to It

2. Use Command Line Tools to Compile a Standalone Program and to Generate a
Downloadable Programming File From It

3. Simulate the Standalone Design

4. Compile and simulate the standalone program using the PAL.

5. Submit a Report of Your Lab Activities

Create a Workspace and Add a Project/File to It
You are to work in groups of two or three during the laboratory session. Do the work for
the session using one person’s account. The amount of code written will be so little that
there is no need to make the files available to the others in the group, but you may do so
if you wish.

As you know, your home directory is on the H: drive, which is a networked drive located
on the domain server for the “tree” network. When you log into your account, your files
from H: are copied to the computer you log into, and when you log off, they are copied
back to H: Although you can do your work on either the H: drive or on the C: drive, you
can save a lot of time when working on your projects if you work on the local copy, on
the C: drive. The instructions that follow assume the model in which you work on the C:
drive and count on the system to copy your work back to the H: drive for you
automatically. If you don’t trust this model, you should back up your work, either to a
floppy or over the network to another computer, such as forbin before you log off. But
this is Windows, so there is really no need to be concerned about backups.

Create a New Workspace for This Laboratory
If you haven’t done so already, click “My Documents” on the desktop, and create
a new folder named “My Projects.” It will be on the same level as ‘My Pictures,”
My Music,” etc. Note the path to your “My Projects” directory in the Address
bar of Windows Explorer.
Start DK, select File New, and choose the Workspace tab on the dialog box that
comes up. Use “Laboratory II” as the Workspace name. For the Location,
browse to your “My Projects” directory at the address you noted in the previous
paragraph.

Revised 9/19/03 CSCI Laboratory II Page 2 of 4

September 17, 2003

Create a Project And Add a Handel-C Source File to It.
Use File New again, but this time, select the Project tab. Name the new project
“Simple,” select Xilinx Virtex II in the left-hand pane, and be sure the project is
part of the Workspace you just created. Now use File New again to add a
Handel-C source file named “simple.hcc” to the project. If you haven’t done so
already, select Tools Options and go to the Tabs tab. Set it so the editor
substitutes spaces for tabs. (A Vickery pet peeve.) You might also want to set the
tab stop width to 2 instead of 4, and be sure auto-indent is checked. Put a
comment line containing the file name at the beginning of simple.cc, and put a
comment block at the beginning of the file that describes the program briefly and
that lists the names of the people in your lab group as authors. Save the file (Ctrl-
S).

Use Command Line Tools to Compile a Standalone Program and
to Generate a Downloadable Programming File From It
Use either your favorite text editor (C:\Utils\Vim\Vim6.2\gvim.exe) or the DK editor to
make simple.hcc a Handel-C program that has a three-bit unsigned register which is
incremented by one for every clock pulse. There is to be a simple main() function
preceded by set statements for the clock, family, and part.

• Look in Section 3.7 of the RC200 Hardware Manual and choose one of the three
external clock pins for your design, B11, C11, or E12. Look up the set clock
statement in Chapter 9 of the Handel-C Language Reference Manual, and use the
external_divide keyword so your design will use a 5Hz clock. (This is just an
exercise; you won’t actually get to work with this clock speed on the RC200.)

• For the set family statement, you may look at the Chip settings for your project
and use the name in parentheses there, or you can look up the valid names on
page 159 of your Handel-C Language Reference Manual, or you can use the name
given in class on 9/15. Be sure you spell and capitalize this name exactly as given
in the manual or on the Chip tab.

• For the set part string, you should use the string given in class on 9/15
(“XC2V1000-4FG456”). Be sure you get this string exactly right.

• Save simple.cc to disk.

• Start a Cygwin bash shell. Cygwin gives you a Unix environment under
Windows. Use a cd command to change directories to your project directory. (cd
“/cygdrive/c/Documents and Settings/<account>/My Projects/Laboratory
II/Simple”) You need the quotes because of the spaces inside the string.

• Compile your program with the –verilog, -vhdl, and -edif options (three
invocations of the handelc command). Ignore the warnings about “No HDL
output style specified …” for the Verilog and VHDL versions.

o Look at simple.v and tell how the clock pin is implemented in Verilog.

Revised 9/19/03 CSCI Laboratory II Page 3 of 4

September 17, 2003

o Look at simple.vhd and tell how the clock pin is implemented in VHDL.

o Look at simple.edf and tell how the family, part, and clock are used in the
netlist.

o What did you find in the simple.ncf file that was generated when you used
the –edif option?

• Compile your program again using the –edif option, and append the full pathname
to the RC200 support library file, rc200.hcl, to the command line. This is needed
for the next step to work.

The handelc command, like gccor g++ is actually a “compiler driver.” That
means it is a program that invokes other programs (preprocessor, compiler, linker)
depending on what options and files are given on the command line. By adding a
library file to the command line, the compiler driver not only compiles the
program, but also links it to a Celoxica-supplied library that includes standard
information used by the Xilinx tools invoked from the edifmake batch file (see
next step.)

• Run the edifmake batch file on the simple module. You will have to type the
command “edifmake.bat simple” from the Cygwin prompt.

o How large is the resulting file, simple.bit?

o Look at the output from map and from par, and tell how many flip-flops,
how many slices, and how many CLBs are used by this design. (Hint: I
mentioned how many slices there are in each CLB in lecture.)

Simulate the Standalone Design
• Type exit or Control-D to exit the bash shell. Go back to the Simple project in

DK. If the Active Build Configuration is not already “Debug” select that from the
drop down list, and click the build toolbar button (or press F7) to build a
simulation of the program.

o What files/directories were built under the Simple directory as a result of
building the simulation?

o What file contains the simulation code for the simple program?

• Press the Step-Into toolbar button (or press F11) to start simulating the program.
There should be at least two windows at the bottom of DK, a Clock/Thread
window, and a Watchpoint window. If they aren’t there use the
View Debug Windows menus to make them visible. (You may use the
Variables window instead of the Watchpoint window if you prefer.) Type the
variable name you used for your 3 bit register into the watchpoint window, and
resize that window and the clock/thread window so you can see all the
information in both of them.

Revised 9/19/03 CSCI Laboratory II Page 4 of 4

September 17, 2003

• Single step through the program (F11) repeatedly and observe the behavior of the
two lower windows.

o What sequence of values does your register take on? Explain.

o What is the sequence of values you see if you change the type of your
register from unsigned to int?

o What happens if you change the register size to 4?

o What happens if you omit the size of the register when you declare it?

• Exit DK, saving all your work.

Compile and Simulate a Simple Program Using the PAL
• Create a new project named PAL_Example in your Laboratory_II workspace, and

add a new Handel-C source file named pal_example.hcc to it. Make sure this new
project is the active project.

• Write a version of pal_example.hcc that does the same thing as simple.hcc, but
instead of the three set statements for device and family, enter them in the Chip
tab of the Build Configuration. To set the clock, define the rate you want (in Hz)
by defining a value for the preprocessor symbol PAL_TARGET_CLOCK_RATE,
and then #include the standard header file, pal_master.hch in your code before the
main function. Omit all three of the set statements from simple.hcc.

o What other symbol do you have to define when compiling a program that
includes pal_master.hch? (Hint: You’ll get an error message when you try
to build the simulation; you’ll have to ask, or look at one of the examples
to determine the symbol’s name.)

• Add the needed #define statement to your code, or define the missing symbol on
the Preprocessor tab of the Project Settings panel. Compile and simulate your
program, and verify that it works the same as the simple version.

Submit a Report of Your Lab Activities
Write answers to the questions asked in this handout, and submit it to me by Monday the
22nd. Write your report so that it can be understood without referencing the handout.
Include program listings of simple.hcc and pal_example.hcc in your report.

	Objective
	Lab Activities
	Create a Workspace and Add a Project/File to It
	Create a New Workspace for This Laboratory
	Create a Project And Add a Handel-C Source File to It.

	Use Command Line Tools to Compile a Standalone Program and to Generate a Downloadable Programming File From It
	Simulate the Standalone Design
	Compile and Simulate a Simple Program Using the PAL
	Submit a Report of Your Lab Activities

