
Measurement and Units of Measure

Introduction
Computer Science deals with three overlapping areas of interest: hardware, software, 
and theory. Computer Architecture is a subject within computer science that deals with 
hardware, which means (among other things) that you need to be comfortable with 
measuring the physical properties of various hardware devices and systems. The 
purpose of this document is to review some key topics that your probably learned long 
ago, but may have forgotten.

Units of Measure and Orders of Magnitude
We always measure the physical properties of a thing using particular units. For 
example, the unit for measuring your bodyʼs mass is the pound and the unit for 
measuring your height is inches. But, of course, itʼs not as simple as that. If you use the 
metric system you measure your mass in kilograms, not pounds, and you measure your 
height in centimeters. And even if you measure your height in inches, you are probably 
mix two different units: feet and inches.
Although we can measure the mass and lengths of the devices and we deal with in 
computer architecture, we are typically more interested in a third property: time 
(measurement unit: the second) and the related properties of period and its reciprocal, 
frequency. Furthermore, computers manipulate physical representations of information, 
which has its own measurement unit, the bit.
 The first issue to deal with is the enormous range of values that occur in the physical 
and information worlds. The term order of magnitude refers to how big or small 
something is, specifically its size rounded to the nearest power of ten. For example, 123 
would round to 100, 575 rounds to 1000; you would say that 575 is one order of 
magnitude larger than 123 because its order of magnitude has one more decimal digit.
In the physical world of length, mass, and time, prefixes are used to indicate 
multiplication of the basic units (meter, gram, second) by various orders of magnitude. 
There are prefixes for every three orders of magnitude, as well as several intermediate 
ones. The multiplication prefixes commonly encountered in computer architecture are:

Multiplier Order of 
Magnitude

Prefix 
(abbreviation)

Common Name

0.000 000 000 001 10-12 pico (p) Trillionth

0.000 000 001 10-9 nano (n) Billionth

0.000 001 10-6 micro (µ) Millionth

0.001 10-3 milli (m) Thousandth
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Multiplier Order of 
Magnitude

Prefix 
(abbreviation)

Common Name

1,000 10+3 kilo (K) Thousand

1,000,000 10+6 mega (M) Million

1,000,000,000 10+9 giga (G) Billion

1,000,000,000,000 10+12 tera (T) Trillion

1,000,000,000,000,000 10+15 peta (P) Quadrillion

In computer architecture, small numbers are most often associated with time (seconds): 
how many milliseconds (msec) it takes a spinning disk to make one rotation, how many 
picoseconds (psec) it takes for a gate to change state, etc. Big numbers are most often 
associated with information storage capacities (how many gigabytes (GB) of main 
memory or terabytes (TB) of disk a computer has) or the reciprocal of time (how fast is a 
clock, in GHz). The remainder of this document tries to put all this terminology in order.

Time (period, frequency)
The basic unit of time is the second, and we use prefixes to denote fractions of a 
second. So one second contains 1,000 milliseconds (msec), 1,000,000 microseconds 
(µsec), etc. Remember, the prefix names represent three orders of magnitude, so there 
are a thousand picoseconds in a nanosecond, a thousand nanoseconds in a 
microsecond, a thousand microseconds in a millisecond, and a thousand milliseconds in 
a second.
Skill: represent the same value using different prefixes.

The same value can be represented in a number of ways. For example, 1 nsec 
is the same as 1,000 psec as well as 0.001 µsec. Although it is not a hard and 
fast rule, the normal way to represent a value is to scale it so that the integer 
part is a number between one and 999. The conversion factor for adjacent 
prefixes is either 1,000 or 0.001, depending on which way  you are going. The 
trick is not to go the wrong way! If you know the conversion factor between feet 
and inches is 12, that only applies to converting feet to inches: 5'×12 give 60". 
To go the other way you have to use 1÷12 as the conversion factor, which is 
the same as dividing by 12 rather than multiplying: 60"÷12 gives 5'. Feet and 
inches are everyday concepts for us, so we are not likely to make silly 
mistakes, like multiplying inches by 12 to get feet (720' in 60"—no way!). But 
not so with scientific prefixes: you have to think carefully when converting 
something like nanoseconds to microseconds to make sure you donʼt end up 
with picoseconds by mistake. Just remember to multiply  when going to smaller 
units and to divide when going to larger units.
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• Convert 1.250 nsec to psec: Multiply, giving 1,250 psec.
• Convert 1.250 nsec to µsec: Divide, giving 0.001250 µsec.
• How many picoseconds in 3.7 µsec? Multiply by 10+6, giving 3,700,000 psec.

Use seconds to measure latency—how long it takes something to happen. Examples 
are how long it takes a gate to change state; how long it takes to execute and 
instruction (or a program); how long it takes to get a copy of some information that is in 
main memory or on disk, etc.
Time is also intimately related to various rate measures—see below.

Information
Computers are all about manipulating digital information, represented as binary digits; 
John Tukey of Bell Laboratories coined the name bit to mean one binary digit in 1946. 
But the digital age owes much of its binary underpinnings to a colleague of Tukeyʼs at 
Bell Labs, Claude Shannon, who proposed the bit as the unit of measure for information 
in 1948. Because Bell Labs was part of the telephone system, Shannon addressed the 
issue of how to measure the information capacity of a communication channel, such as 
a telephone line. Simply stated, Shannon defined the bit as the amount of uncertainty 
that is reduced by answering one yes/no question. For example, if I do not know 
whether it is raining outside and I look out the window, my uncertainty is reduced by one 
bit—whether it is actually raining or not. Of course, I will undoubtedly obtain other 
information by looking out the window, but my uncertainty about whether or not it is 
raining has been reduced by one bit.
Key to understanding information measurement is the notion of the number of 
possibilities our uncertainty covers. If I ask you to pick a number between 1 and 100, my 
uncertainty spans 100 possibilities. The number of bits of uncertainty, however, is just 
log2(100), because I can determine which number you picked by getting the answer to 
that many yes/no questions. My strategy is to use each question to eliminate half of the 
possible outcomes. Rather than ask, “Is it 1? … Is it 2? … ” until you say “yes,” I might 
start by asking, “Is it an odd number?” Regardless of your answer, I will have eliminated 
half of the possible outcomes and reduced my uncertainty by one bit. Since log2(100) is 
approximately 6.644, my “binary search” strategy should reduce my uncertainty after 
just 6-7 questions rather than the 50 it would take on average if I just asked about each 
number individually.
The number 6.644 in the previous example raises some important points. Obviously, 
you canʼt ask a fraction of a yes/no question; either you ask the question or you donʼt, 
and if you do ask it, the answer has to be either “yes” or “no.” First, letʼs look at a way in 
which the fractional number of bits actually does make sense. Then weʼll look at how 
information is stored in a computer, where fractional bits donʼt exist any more than 
fractional yes/no questions.
To understand fractional bits of information, think in terms of the average number of yes/
no questions you would have to ask assuming that you get to play the guessing game 
lots of times. Consider these two sequences of questions and answers:
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Sequence 1Sequence 1 Sequence 2Sequence 2

Question Answer Question Answer

Bigger than 50? No Bigger than 50? No

Bigger than 25? No Bigger than 25? No

Bigger than 12? No Bigger than 12? No

Bigger than 6? No Bigger than 6? No

Bigger than 3? No Bigger than 3? No

Bigger than 2? No Bigger than 2? Yes

After the six questions in Sequence 1, we still donʼt know what the number was that we 
are searching for: it could be either 1 or 2, and we would have to ask a seventh question 
to find out which it is. But after the same six questions and after receiving all the same 
answers the first five time, we know that the answer is 3, which is the only number 
bigger than 2 that is not bigger than 3. The point is that, depending on the number you 
are trying to guess and on how you choose to divide the uncertainty in half, sometimes 
it will take six questions and sometimes it will take seven. You could try playing the 
game lots of times with a patient friend (or a computer programmed to act like a patient 
friend), and count how often it takes six questions and how often it takes seven. OK, I 
just played the game 1,000 times and found that I got the secret number after six 
guesses 356 times, but the rest of the time it took seven guesses. What is the average 
number of guesses? It is a weighted average. The two numbers being averaged are six 
and seven, but instead of just adding them together and dividing by two, you multiply 
the value six by a weight of 356 and multiply seven by the weight (1,000 - 356), then 
you add the two products and divide by the number of cases, 1,000. Thatʼs 
((356×6)+(644×7))÷1,000 = 6.644 = log2(100). Of course if this the game is played truly 
randomly, it wonʼt always come out exactly 6.644, but if you play it enough times (a) you 
will get very bored and/or lose all your friends and (b) will come closer and closer to the 
actual fractional number of bits.

Weighted averages show up a lot in this course. A shortcut (sometimes) is to 
adjust all the weights so they add up to 1.0, eliminating the need for division at 
the end. In the example, divide each weight by the sum of the weights (giving 
0.356 and 0.644), then just multiply and add.

[integer numbers of bits]

Rates (speed, bandwidth)
Weighted Averages (CPI)
Performance (Execution Time)
Comparisons (ratios, percentages)
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