Instructions:

- For multiple choice questions, circle the letter of the one best choice unless the question explicitly states that it might have multiple correct answers.
- There is no penalty for guessing, so answer all questions.
- Place drawings where indicated in the question; be sure to put the question number next to your drawing; use pencil rather than ink.
- Unless otherwise indicated, all questions count equally; but questions with multiple parts count more.
- * No electronic devices of any sort may be used for any reason during the exam.
- 1. Is it all right to use a phone, calculator, or any other electronic device during this exam?
 - A. Other people can't, but I'm different.
 - B. Only if the professor isn't looking.
 - C. Yes, as long as the phone is set to vibrate.
 - D. iPhones are okay, but Blackberries are not.

E. No.

- 2. I am thinking about my birthday. *How many yes/no questions* would you have to ask me to find out **which month** I was born in?
 - A. 12
 - B. 6
 - C. At least 3, but possibly 4.
 - D. At least 4
 - E. $log_2(2^{12})$
- 3. Now you have to guess everyone's birth month. What is the *average number of yes/no questions* you will have to ask everyone?
 - A. 12

B. 6

- С. _г *log₂(12)* _г
- D. log₂(12)

E. log₂(2¹²)

- 4. If someone says, "A is two orders of magnitude larger than B," what is the most reasonable way to interpret this statement?
 - A. A is twice as large as B.
 - B. A is approximately 100 times larger than B.
 - C. A is exactly, or very close to, 200 times larger than B.
 - D. A is approximately 2,000 times larger than B.
 - E. A is approximately equal to B plus 200.
- 5. 25 nsec = ____ μsec.
 - A. 25,000
 - B. 0.025
 - C. 25,000
 - D. 0.000 025
 - E. 2.5

- 6. What is the *period* of a 4 GHz signal?
 - A. 4,000,000 Hz
 - B. ¼ sec
 - C. ¼ msec
 - D. ¼ µsec
 - E. ¼ nsec
- 7. What is the *frequency* of a signal with a period of 0.5 sec?
 - A. 0.5 Hz
 - B. 0.5 Hx
 - C. 2.0 Hx
 - D. 2.0 Hz
 - E. 500 msec
- 8. What is the *period* of a signal with a period of 50 psec?
 - A. 0.050 sec
 - B. 0.000 050 sec
 - C. 0.000 000 050 sec
 - D. 0.000 000 000 050 sec
 - E. 0.000 000 000 000 050 sec
- 9. What is the average of 80 7's, 10 9's, 5 4's, 3 2's, and 2 5's? (Remember, no calculators allowed.)
 - A. 102.5
 - B. 3.9
 - C. 0.19
 - D. 6.86
 - E. 31.4
- 10. What is the sum of the weights for the weighted average in the previous question?
 - A. 270
 - B. 100
 - C. 686
 - D. 314
 - E. 98.6
- 11. What is the *rotation speed* of a tire that has a period of 100 msec?
 - A. 55 MPH
 - B. 6,000 KHz
 - C. 6,000 RPM
 - D. 600 KHx
 - E. 600 RPM
- 12. Ben and Jerry's stacks ice cream on palettes (wooden platforms) with 16×8 rectangles of half-gallon containers 32 layers high on each palette. *How many gallons* of ice cream go on a palette? (*Hint: there are 2¹ half gallons in a gallon!*)
 - A. 11
 - B. 2¹¹
 - C. 5,280
 - D. 2⁵⁶
 - E. 0.0002

- 13. A computer monitor is 2,048 pixels wide by 1,024 pixels high. Each pixel of this monitor requires 4 bytes of information to be drawn. What would be the *bandwidth* needed to supply all the information needed to redraw the entire screen 64 times per second? (bps = bits per sec; Bps = Bytes per sec)
 - A. 229 Bps
 - B. 2³² bps
 - C. 512 MBps
 - D. 4 Gbps
 - E. All of the above
- 14. The same program is run on computers A and B. Computer A is 1.5 times faster than B. Computer A took 10 seconds to run the program. *How long* did computer B take?
 - A. 5 seconds
 - B. 10 seconds
 - C. 15 seconds
 - D. 20 seconds
 - E. 3.8 nsec
- 15. Write this question number on the back of an exam sheet, and write the truth table for a full adder next to it.
- 16. Write this question number on the back of an exam sheet, and write the truth table for the function $y = \overline{abc} + \overline{abc} + a\overline{b}\overline{c} + a\overline{b}c$
- 17. Write this question number on the back of an exam sheet, and minimize the function from the previous question using a Karnaugh Map. Show all work.
- 18. Write this question number on the back of an exam sheet, and draw the gates to implement the *minimized* function from the previous question.
- 19. This question doesn't count: I just want to see how many people know the answer. What is a name for the two-variable function with *minterms* 1 and 2? (Just guess if you don't know.)
 - A. AND
 - B. OR
 - C. NAND
 - D. NOR
 - E. XOR
- 20. Write this question number on the back of an exam sheet, and draw all the AND, OR, and NOT gates to implement a 4×1 multiplexer. Label all inputs and outputs appropriately.
- 21. *Fill in* the missing cells **in binary** for the two-bit adder from *Assignment 2*.

Α	В	Cin	Cout	Sum
002	11 ₂	02		
102	102	12		
012	002	12		

22. *Fill in* the missing cells, **using hexadecimal for the Result column** for the four-bit adder-subtracter from *Assignment 3.* (Table on next page.)

sub (switch 8)	А	В	Cout	Overflow	Result
0	6 ₁₆	A ₁₆			
1	C ₁₆	7 ₁₆			
0	516	2 ₁₆			

23. In Assignment 4, the *condition_code[3..0]* array was used for the C, V, N, and Z outputs of the ALU. Use a short phrase to *define each*:

condition_code[3] (C) _____

condition_code[2] (V)______

condition_code[1] (N) ______

condition_code[0] (Z)_____

24. *Fill in* the missing cells **in hexadecimal** for the four-bit ALU from *Assignment 4.* **Show your work below the table for possible partial credit.** For AND and OR, only the N and Z bits matter for an answer to be considered correct; you can leave C and V at zero for those rows.

А	В	function_code	condition_code	Result
0	0	1		
3	A	2		
3	А	6		
1	F	0		
3	С	С		