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Digital computers use logic circuits to operate on Boolean values, but the real world is 
made up of physical entities that have properties such as mass, color, pitch, duration, and 
beauty.  This chapter introduces some of the considerations that go into mapping 
elements of the real world into Boolean values so that logic circuits can operate on them. 

Measuring Physical and Digital Quantities 
The physical world is full of phenomena that we can measure using various units for such 
properties as length, mass, and time.  There is an international standard system of units, 
called SI (an abbreviation for the French term, “Le Système International d’Unites”) for 
measuring physical units, which you can examine in detail at the web site of the US 
National Institute of Standards and Technology (NIST) [1].  The SI uses the mks system 
of measurement in which the meter, kilogram, and second are the standard units for 
measuring length, mass, and time.  There are also well-defined units for measuring other 
aspects of the physical world (but not beauty!). 

The range of values that physical measurements can take on is typically extremely large.  
For example, sound is caused by variations in sound pressure level (compression of the 
air), and the unit of measure for sound pressure level is the dynes per square centimeter 
(d/cm2)1.  The weakest sound pressure level that humans can hear is approximately 
0.0002 d/cm2 and the sound pressure level that is so intense as to cause pain is 
2,000,000,000 d/cm2, a range of 13 orders of magnitude.  The term “order of magnitude” 
is often used informally to mean “big difference,” but here we’re use it in its strict 
meaning of “bigger by a factor of ten.”  Also, you may already be familiar with the 
decibel (dB) unit for measuring the loudness of sounds, which uses a logarithmic scale to 
relate sound intensities.  Using decibels, the threshold of hearing (0.0002 d/cm2) is 0 dB 
and the threshold of pain is 130 dB.  One dB, which corresponds to a ratio of 1:100.1, is 
just about the minimum difference in two sound intensities that humans can discriminate 
between. 

Table 1 lists the prefixes used to identify some of the standard multiples and divisions of 
various physical units of measure over a range of 30 orders of magnitude.  For example, 
you would write 6.25 μsec for 0.00000625 of a second.  (Where the Greek letter μ can’t 
be written, such as in ASCII-formatted text, you will typically see the roman letter ‘u’ 
substituted.)  Also, the standard unit for weight is the kilogram, not the gram, but the 
prefixes are applied to grams.  So 1 mg is 0.001 gram, and 1 kg is 1,000 grams. 

 
1 Actually, there are several units of measure for sound pressure level, which are related by the following 
set of equalities: 1 d/cm2 = 1 microbar = 0.1 N/m2 = 0.1 Pa.  The unit abbreviations are d for dynes, N for 
Newtons, and Pa for Pascals.  There are many good web sites with information about physical units of 
measure, especially with regard to sound measurements, in addition to the NIST sites listed in the text.  For 
example, “Elements of psychoacoustics”[2] at the Broadcast Engineering web site. 
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Power of 10 Decimal Value Prefix 

15 1,000,000,000,000,000 peta (P) 

12 1,000,000,000,000 tera (T) 

9 1,000,000,000 giga (G) 

6 1,000,000 mega (M) 

3 1,000 kilo (k) 

-3 0.001 milli (m) 

-6 0.000001 micro (μ) 

-9 0.000000001 nano (n) 

-12 0.000000000001 pico (p) 

-15 0.000000000000001 femto (f) 
Table 1 Some standard multiples for physical units of measure. 

When digital systems, such as computers and Digital Signal Processors (DSPs), operate 
on the physical world, the physical properties first have to be cast into the digital realm of 
binary numbers.  When working with the binary numbers, it’s convenient to adapt the 
decimal SI prefixes to represent powers of two instead of powers of ten.  This practice 
works because of the coincidence that 210 is approximately equal to 103 (1,024 compared 
to 1,000), and the SI prefix k has been adopted to refer to 210 as a convenience.  Likewise, 
220, 230, 240, and 250 are often abbreviated using the M, G, T, and P prefixes.  But using 
the same abbreviation to mean two different values can be confusing, especially when 
disk manufacturers use GB to represent 109 bytes of storage capacity and DRAM 
manufacturers use the same abbreviation to represent 230 bytes.  (This is not due to a 
cynical attempt to overstate storage capacities on the part of disk manufacturers, but 
rather is related to differences in the natural structures underlying disks and DRAMs.  
See Chapter xxx on memory for the details.)   The NIST has provided a set of alternate 
names for the prefixes to use with values expressed as powers of two rather than ten, as 
shown in Table 2. 

Power of 2 Decimal Value Prefix 

50 1,125,899,906,842,624 pebi (Pi) 

40 1,099,511,627,776 tebi (Ti) 

30 1,073,741,824 gibi (Gi) 

20 1,048,576 mebi (Mi)

10 1,024 kibi (Ki) 
Table 2 SI prefixes for binary units of measure. 

But the names for the binary prefixes are a bit awkward to write and pronounce compared 
to the conventional prefixes. As a result, where convention is well established and the 
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meaning is clear (when talking about disk drives and DRAM capacities, for example), the 
abbreviations in Table 1 continue to be used in practice. 

Binary Basic Skills 
You will be working a lot with binary numbers, so there are a few things about them with 
which you should be fluent.  “Fluency” means that you should over-learn these facts so 
you can work with them without thinking.  To start, test yourself:  how fast can you say 
the first ten powers of two?  If you have to mentally double 128 to get to 256, you know 
the principle but you aren’t yet fluent.  And if you have to write the series on paper to be 
sure it’s right, you really aren’t there at all yet.  You should be able to recite them as fast 
as you can say the first eleven letters of the alphabet. 

You should not only know the sequence of the powers of two, you should be sure you 
know, fluently, which decimal value goes with which exponent.  If you can’t answer 
questions like, “What is 29?” or “What power of 2 is 128?” immediately and without 
doing mental arithmetic, you need to practice until you can. 

You should be comfortable with the fact that binary, like decimal, is a positional number 
system, with each position in a number corresponding to a particular power of two.  For 
standard positional number systems, the exponents are laid along a number line as in. 
Figure 1. 

 

Figure 1.  Number line for binary numbers, showing the base 2 exponents with their corresponding 
values in fractional and decimal forms. 

Because the left end of a positional number has the biggest weight, it is often called the 
most significant digit or, in the case of binary numbers, the most significant bit (msb).  
Likewise, the rightmost bit is the least significant bit (lsb). 

You need to be comfortable working with the logarithmic representation of exponents, 
which says that logbase(baseexponent) ≡ exponent.  That is, the logarithm of a number is the 
exponent to which a number called the base must be raised to produce the number.  Using 
base two, this concept is simply a shorthand way of expressing your fluency of powers of 
two: log2(8) = 3, for example is just another way of expressing your knowledge that 23 = 
8. 

Values with negative exponents are the reciprocals of the corresponding values with 
positive exponents: 2-3 = 1 / 23 = 1/8 = 0.125. 

Hexadecimal 
Base sixteen numbers are important because they provide a compact way to represent 
binary numbers compactly.  Because 16 is 24, every hexadecimal digit represents exactly 
4 bits of information.  One of the hazards of computing is that you should be able to 
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translate between hexadecimal and binary representations fluently.  If you have to think 
to say that 0xC is 11002 or that 10012 is 0x9, you’re doomed!  Especially important in 
many situations is to recognize immediately that the difference between 0x7 and 0x8 is 
that the former (and all values below it) has a binary zero in the leftmost position and the 
latter (and all values above it) has a binary 1 in the leftmost position. 

Measuring and Encoding Information 
If this were a discussion of physics or psychoacoustics, we’d be happy to deal with 
measurements of the physical world and of the human response to physical stimuli.  But 
in dealing with digital systems we need some way to be able to cast the physical world 
into the digital realm.  The groundwork for doing this was laid by two men working in 
different parts of the world during the middle of the twentieth century: Alan Turing (UK) 
and Claude Shannon (US). 

Arguably the two most significant developments in computer science during the 
twentieth century were Alan Turing’s Turing Machine [4] and Claude Shannon’s 
Information Theory [3].  The Turing Machine told us that any calculation can in principle 
be computed by a relatively simple “finite state” machine.  Digital systems are often 
designed and implemented as finite state automata.  Information theory says all 
information can be represented using binary numbers.  At this point we are concerned 
with representing the physical world using the basis provided by information theory. 
We’ll deal more with performing calculations using binary numbers in chapter 00, and 
we’ll cover digital circuits based on finite state automata in chapter 00. 

Shannon, who worked for Bell Laboratories, was interested in measuring the capacity of 
telephone lines for carrying voice messages.  His insight was to measure information in 
terms of uncertainty and to use the bit as the unit of measure for uncertainty.  
Specifically, he defined one bit of information as the amount of uncertainty that is 
reduced by answering one yes-no question.  Of course binary numbers were well known 
long before Shannon did his work in the mid-twentieth century, and the credit for coining 
the term bit to represent one binary digit goes to Shannon’s colleague at Bell Labs, J. W. 
Tukey.  But the notion that something as abstract as “information” could be measured 
precisely using the bit as the unit of measure was Shannon’s genius. 

What Shannon expressed was that we gain information by reducing the number of 
alternatives that might exist.  Shannon couched his work in terms of messages being sent 
over a communications channel (think telephone lines).  If you want to know whether to 
take an umbrella when you leave the house you don’t need much information.  But if you 
want to know the expected temperature and probability of rain for the next five days, 
there is much more uncertainty, and you need more information to resolve it.  Here are 
some basic examples of how to measure information based on the number of possible 
alternatives: 

Example 1.  “I’m thinking of a number between 0 and 7.”  How much 
information would you need in order to know which number it is? 

Solution:  There are 8 choices, and the answer is three bits, which you can obtain 
by any of a variety of binary search techniques.  At each step, you ask a yes-no 
question that divides the amount of uncertainty in half.  For example, the first 
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question could ask whether the number is even.  Whether the answer is yes or no, 
you’ve reduced the number of possibilities from 8 to 4.  With a total of three 
questions you can always know exactly which number I was thinking of, so you 
can say there were three bits of information in the original situation. 

Example 2.  “I’m thinking of one of the days of the week.”  How many yes-no 
questions do you have to ask me to find out what day I’m thinking of? 

Solution: Since 7 is not a power of 2, you will sometimes need three questions, 
but sometime will need only 2.  If your first question is, “Is it Monday, Tuesday, 
Wednesday, or Thursday?” and the answer is “no” and your second question is, 
“Is it Friday or Saturday?” and the answer is “yes,” then you have to ask a third 
question to find out whether the answer is Friday or Saturday.  But if the answer 
to the second question is “no” you don’t have to ask any more questions because 
you know the answer is “Sunday.”  So how many bits of information are there 
when there are 7 unknowns?  The answer is log2(7), which equals 2.808….  In the 
previous example, there were log2(8), which is exactly 3 bits of information.  If 
the idea of fractions of a bit isn’t intuitive to you, you can try the following 
experiment: Play the guessing game for days of the week with a partner.  Have the 
person doing the thinking pick days of the week randomly and/or have the person 
doing the guessing use randomly chosen strategies for doing the binary search.  
Record how many times it takes two questions to get the answer and how many 
times it takes three.  Compute the average of all the two’s and three’s and see 
what the answer is.  For example, if you played the game 20 times and required 3 
questions 16 times and 2 questions 4 times, the average would be 
(3*16+2*4)/20 = 2.8. (People are notoriously bad at doing things randomly, so 
you might prefer writing a program that generates the days or the guesses 
randomly.) 

Although information theory gives us a way of measuring information, in itself it doesn’t 
tell us how to encode information.  For example, a thinker and a guesser could agree to 
encode the numbers 0-7 using standard binary notation: 000, 001, 010, 011, … , 111.  In 
that case, a workable strategy for solving the first example would be to ask questions like, 
“Is the leftmost bit a 0?”  Once the guesser knows the three binary values, he or she can 
simply use knowledge of the encoding mechanism to give the decimal value. 

But how do you map days of the week to binary numbers?  The answer is that there are 
many ways to do so.  You could call either Sunday or Monday the “first” day, and you 
could use either 000 or 001 as the “first” number, but there is no single right way to 
assign numbers to days, and there will always be one 3-bit binary number that doesn’t 
represent anything.  The process of mapping specific binary numbers to a set of objects is 
called encoding.  From an information viewpoint, as long as everyone uses the same 
mapping (the same code), the actual numbers used for individual objects really doesn’t 
matter.  But some codes are better than others.  For example, using binary numbers that 
increase by one for successive days of the week might make it easier to write a program 
that steps through the days in sequence compared to using a random ordering. 

Picking good encoding schemes is a big topic that has generated a lot of research.  In this 
chapter we’ll look at some specific types of information and some of the encoding 
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schemes commonly used with them.  But we won’t be covering how to generate good 
encoding schemes, only how some that are used actually work.  We begin by reviewing 
how binary numbers can be used to represent numerical values.  “How to use numbers to 
represent numbers” may seem like a simple-minded task, but it turns out to be a 
surprisingly complex (no pun intended) matter. 

Representing Numbers 
As the guessing game in Example 1 indicated, assigning binary numbers to decimal 
values can be a simple exercise.  But two important characteristics of numbers quickly 
make the situation complicated: negative values and fractions. 

Signed Numbers 
If you have n bits available for representing integers, you can represent a maximum of 2n 
different integer values.  If the integers are unsigned, it would be natural to encode the 
decimal values from 0 to 2n-1 using the equivalent binary numbers.  But if you are going 
to allow for negative numbers, some of the information you encode will be the sign of the 
value.  If all numbers were either positive or negative, it would take exactly one bit to 
determine the sign, but there is a slight inaccuracy here because there is a special value 
that is neither negative or positive: zero. 

There are four ways of encoding signed values in binary in common use today: two’s 
complement, biased, sign-magnitude, and packed decimal.  Table 3 lists the sixteen 
possible binary codes for the case of n = 4, along with the corresponding unsigned, two’s 
complement, biased, and sign-magnitude values.  The one’s complement values, although 
not commonly used in practice, are included in the table for purposes of discussion. 

Binary 
Code 

Unsigned Two’s 
Complement 

One’s 
Complement 

Bias-
8 

Sign-
Magnitude 

Packed 
Decimal 

0000 0 0 +0 -8 +0 0 

0001 1 +1 +1 -7 +1 1 

0010 2 +2 +2 -6 +2 2 

0011 3 +3 +3 -5 +3 3 

0100 4 +4 +4 -4 +4 4 

0101 5 +5 +5 -3 +5 5 

0110 6 +6 +6 -2 +6 6 

0111 7 +7 +7 -1 +7 7 

1000 8 -8 -7 0 -0 8 

1001 9 -7 -6 +1 -1 9 

1010 10 -6 -5 +2 -2 (+) 

1011 11 -5 -4 +3 -3 (-) 

1100 12 -4 -3 +4 -4 + 
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1101 13 -3 -2 +5 -5 - 

1110 14 -2 -1 +6 -6 (+) 

1111 15 -1 -0 +7 -7 (+) 

Table 3 Signed Number Encodings 

Before reviewing how each of these encoding schemes “works,” there are a couple of 
features of Table 3 to notice.  The first is that one’s complement and sign-magnitude both 
have two representations for zero, marked +0 and –0 in the table.  This feature makes 
them awkward to work with because any testing for zero has to involve two tests when 
using these encodings.  And having two representations for zero makes these codes 
inefficient because they cannot represent as many different values as the other codes. 

The second thing to notice is that two’s complement values increase in an orderly fashion 
as the unsigned binary codes increase in magnitude, except for the big jump between +7 
and –8.  Biased numbers, on the other hand, increase in strict binary order as the binary 
codes increase. 

The third thing to recognize, and this is a common misperception among many people, all 
the values listed in the first column are “two’s complement numbers” (or biased, or sign-
magnitude, or one’s complement for the other columns).  That is, 00112 is just as much a 
two’s complement number as 11012 when two’s complement encoding is being used.  
The first number is the two’s complement code for +3 and the second one is the two’s 
complement code for –3.  A number doesn’t have to be negative to be represented using 
two’s complement (or any other) encoding. 

Finally, the packed-decimal column is different from the other encoding schemes because 
it uses four bits to represent the sign of the number, with 0xC (11002) and 0xD (11012) 
being the “preferred” representations, and alternate plus and minus codes indicated in 
parentheses.  Using packed decimal, there are four representations for “positive zero” and 
two representations for “negative zero!”  Actually, it’s even worse than that; see the 
section on packed decimal below for more information. 

Two’s Complement Encoding 

Most computer science students already know that negative two’s complement numbers 
have a 1 in the leftmost bit position and that you take the two’s complement of a number 
by “flipping the bits and adding 1.”  You may also know that –x is represented as an n-bit 
two’s complement number as 2n – x.  For example, the 4-bit two’s complement 
representation of –3 is 16 – 3 = 13 = 11012. 

Another way to look at two’s complement encoding is that it is the same positional 
number system as unsigned binary numbers, but with a negative weight for the leftmost 
bit.  Thus, for 4-bit two’s complement numbers, the value 1101 would represent: 

 

And 0011 would represent: 
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Because positive numbers and zero have a 0 bit in the leftmost position, the negative 
weight of that bit doesn’t get added into the value, and these numbers can be evaluated 
the way unsigned binary numbers are. 

A negative weight for the msb of two’s complement numbers gives rise to an important 
concept of sign-extension, which in turn provides a shortcut for figuring out the values of 
many two’s complement numbers. 

When a digital system works with numbers, there is always a fixed number of bits that 
the logic circuits work with.  In a high level programming language, you see this as the 
“size of a variable.”  Java is a very clean language in this respect: if you declare a 
variable to be of type int, it will be represented using 32 bits.  Variables of type byte are 8 
bits, of type short are 16 bits, and of type long are 32 bits.  At the other extreme, 
languages like Handel-C allow you to specify exactly how many bits each variable 
occupies.  But the net result is the same: every variable occupies a fixed number of bits.  
Sign-extension is the mechanism that allows the value of a variable of one size to be 
stored in a variable of another size without changing the value represented.  For example, 
if a 4-bit two’s complement variable holds 11012 (-310) and it is to be copied into a 5-bit 
variable without changing the value, the result will be 111012, which is obtained by 
making a copy of the sign bit on the left end of the new variable.  The value of the new 
variable is still –3: 

 

By extending the sign bit one place to the left we’ve added negative 16 to the encoded 
value, but at the same time the negative 8 in the 23 position has now become positive 8, 
an increase of +16 that exactly offsets the value of the new sign bit.  Every bit position in 
a binary number has exactly twice the weighted value as its neighbor to the right, so this 
process of sign extension can be repeated indefinitely: 101 = 1101 = 11101 = 111101 … . 
The process works just as well for positive values as for negative values, with the 
simplification that all the leftmost zeros in a positive number have no effect on its value: 
011 = 0011 = 00011 = 000011 … . 

You can use the concept of sign extension to simplify the process of evaluating a 
negative two’s complement number.  You can safely ignore a continuous string of one’s 
on the left end of a two’s complement number except the rightmost one.  So if you are 
given the number 11111111111111111111111111111111102 to evaluate, you can just 
collapse all the leftmost ones to a single one: 102 and simply evaluate 

.  (What value does the two’s complement number 12 represent?)  
This technique only works for a continuous string of ones on the left, though.  Just as you 
couldn’t ignore the leftmost one in 01000000000000000001, you can’t ignore the 
leftmost zero in 101111111111111111110. 

Remembering from your hexadecimal fluency that 0xF is 11112 makes two’s 
complement values like 0xFFFFFF80 particularly easy to evaluate.  (Do you have to read 
this sentence to know it’s –128?) 
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Finally, coming back to the common misperception mentioned earlier about only 
negative numbers being “two’s complement,” let’s make a distinction between “two’s 
complement encoding” and the “two’s complement operation.”  Encoding simply means 
that the value can be determined by assigning a negative weight to the leftmost bit, and 
applies equally well to both negative numbers (where the leftmost bit is one) and zero or 
positive numbers (where the leftmost bit is zero).  The two’s complement operation, that 
business of flipping the bits and adding one, is more properly thought of as negation.  
You can negate a positive number to get the equivalent negative number.  But you can 
just as easily negate a negative number to get the corresponding positive number.  And 
you can negate a value without paying attention to its sign by performing exactly the 
same steps of flipping the bits and adding one: 

0011 Original value, +3 

1100 Flip the bits 

0001 Add one 

1101 Negation of +3 is –3 

0010 Flip the bits of -3 

0001 Add one 

0011 Negation of –3 is +3 

Numerically, flipping the bits and adding one is the same as subtracting a number from 
2n.  In our example, n is 4, and the encoding of –3 is 16-3 = 13 = 11012.  Going the other 
way, 16- -3 is 19, or 100112.  But because we are working with n=4, the leftmost of those 
five bits is discarded, leaving the correct encoding of +3, which is 00112.  It is a general 
characteristic of two’s complement numbers that adding, subtracting, and negation 
operations will result in an n+1 bit answer, and that the leftmost bit in such cases is 
simply ignored.  This topic will be covered in more detail in Chapter 00 when we discuss 
carry and overflow while performing two’s complement arithmetic. 

So, what happens if you negate a two’s complement zero?  There’s only one zero, so do 
you get zero, or something else?  (Try it.) 

Since there is only one two’s complement representation of zero, and since that 
representation has the same value of its sign bit as all the positive values, and since there 
has to be an even number of values that can be encoded in n bits no matter what the value 
of n is, it follows that there has to be one more negative two’s complement number than 
there are positive numbers.  In Table 3 the extra negative value is –8.  In general it is –2n-

1 and the range of values that can be represented using two’s complement is –2n-1 to +2n-1-
1. 

So, what happens if you try to negate –2n-1? (Try it for n=3.)  The moral is that the extra 
negative value, when using two’s complement, is an anomaly.  If you are developing a 
system that people’s lives or money depends on and it’s at all possible for that maximum 
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negative value to occur, you have to check for it and design your system to respond 
appropriately when it occurs. 

One final point about two’s complement encoding: it’s almost universally used for 
encoding signed integers because the negation operations (flipping bits and adding one) 
can be done very easily using digital circuits.  This means that instead of having two 
separate circuits for addition and subtraction, a digital system can achieve the same 
functionality using a single addition circuit coupled with simple negation logic.  Whether 
the subtrahend is positive or negative in value doesn’t matter, just add its negation to the 
minuend to get the answer2. 

One’s Complement Encoding 
With two’s complement under your belt, one’s complement is trivial to understand.  But 
also pretty useless!  One’s complement negation is even simpler than two’s complement 
negation: just flip the bits.  And you don’t have to worry about that extra negative value 
when doing arithmetic.  Unfortunately the two zeros complicate things enormously, and 
you can’t subtract simply by negating the subtrahend and adding. 

But understanding the name “one’s complement” itself can be useful.  One way to think 
of the “flip the bits” operation is to subtract the n-bit number to be negated from the 
number consisting of n ones.  There are only two possible cases: 1-0=1 and 1-1=0, and in 
both cases the resultant bit is the opposite value of the bit being subtracted.  So “one’s 
complement” means that you negate by subtracting from all ones. 

Biased Encoding 
In the context of encoding integers, a bias is a value that is subtracted from an unsigned 
binary number to get a signed value.  In Table 3, the bias chosen was 8, and the encoded 
values ranged from –8 to +7.  But the bias could be any value.  For example, if the bias 
were 1, the encoded values would have ranged from –1 to +14.  A bias equal to half the 
range gives the best balance between the number of positive and negative values that can 
be represented, but there are situations where it may be advantageous to use a bias that 
isn’t exactly half the range.  You’ll see such a situation when we discuss floating-point 
numbers below. 

Biased encoding makes addition and subtraction difficult.  Basically, if you add two 
numbers, you have to subtract the value of the bias from the result to get the correct 
answer, which leads to complicated arithmetic circuits.  But biased notation has two big 
advantages over other systems.  It’s the only encoding that preserves the numerical order 
of the unsigned code words in the encoded values, and except for two’s complement it’s 
the only encoding with a single zero.  These two properties make it very easy to design 
digital circuits for comparing biased numbers.  Again, you’ll see more about why this is 
important in the discussion of floating-point numbers below. 

                                                 
2 The minuend is the one on top and the subtrahend is the one on the bottom in a paper and pencil 
subtraction problem. 
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Sign-Magnitude Encoding 

The name of this encoding scheme says it all: a signed number is represented using one 
bit to indicate the sign (typically, 0 means positive and 1 means negative), and the 
remainder of the bits represent the absolute value (magnitude) of the number.  Negation 
is as easy as flipping the value of the sign bit.  But using sign-magnitude means that there 
is no easy way to do arithmetic operations as simple as addition and subtraction; there is a 
considerable amount of overhead required to determine the signs of the operands, 
whether to add or subtract, and what the correct sign of the result is.  This overhead is 
way too much for efficient integer calculations, but floating-point numbers require such 
complicated digital circuits for doing their arithmetic, that sign-magnitude encoding fits 
in well with that situation. 

Packed Decimal Encoding 
Although we are including packed decimal in our discussion of integer encoding, it 
actually finds its major use in calculations involving decimal fractions.  It is particularly 
useful when the computer must accurately mimic paper and pencil calculations that must 
be accurate to a certain number of decimal places, such as the hundredth part of a dollar.  
Even though packed decimal does not actually provide explicit support for fractions, the 
calculations can be done in units of pennies (hundredths of a dollar), and the results 
presented to the person reading them with a decimal point printed between the dollar and 
penny parts.  It is also particularly easy to convert between the character representation of 
a decimal number and it’s packed decimal representation, and vice-versa. 

The basic idea of packed decimal encoding is to use hexadecimal digits to represent 
decimal digits.  As Table 3 indicates, the six hexadecimal digits that don’t correspond to 
decimal values are used to represent the sign of the value, which normally occupies the 
rightmost hexadecimal position.  Thus 0x01234C is +123410 and 0x01234D is –123410.  
In a computer with a byte-structured memory, packed decimal numbers would be stored 
two digits per byte, requiring all values to have an odd number of decimal digits.  If there 
is an even number of decimal digits, as in the example value of +1234, the packed 
decimal would be padded with a leading zero to make the number of digits odd and the 
total number of bits a multiple of 8. 

Although converting between the textual representation of numbers and the equivalent 
packed-decimal representation is quite straightforward, packed decimal arithmetic is 
quite complex, and requires digital circuits to simulate the processes of paper and pencil 
calculations quite literally. 

Copyright © 2005-2006 by Christopher Vickery, all rights reserved. 



Background Material  Page 12 of 13 

Numbers With Fractions 

Fixed-Point Numbers 

Floating-Point Numbers 

Text 

Images 

Sound 

Exercises 
1. Browse the Physics Laboratory of NIST’s web site [[1]] and answer the following 

questions: 

a. What is the range of values for which the NIST lists named prefixes? 

b. Are all named units of measure separated by three orders of magnitude 
(multiples of 103), like the ones listed in Table 1? 

c. The text mentions mass, length, and time.  What is the full list of physical 
attributes for which there are SI standard units? 

d. Using Wikipedia.com or Encyclopedia.com, find out the relationship 
between the mks and cgs systems of measurement.  

2. Converting from one unit to another can lead to wrong results if you aren’t 
careful.  For example, you know there are 12 inches in a foot, so the “conversion 
factor” between inches and feet is 12.  Or is it 1/12?  Answer the following 
questions: 

a. One inch = ______ feet. 

b. One foot = ______ inches. 

c. To convert inches to feet, multiply the number of inches by ______. 

d. To convert feet to inches, multiply the number of feet by ______. 

e. One microsecond = ______ nanoseconds. 

f. One nanosecond = ______ microseconds. 

g. To convert microseconds to nanoseconds, multiply the number of 
microseconds by ______. 

h. To convert nanoseconds to microseconds, multiply the number of 
nanoseconds by ______. 

3. An audio tone has a frequency of 1,760 Hz.  What is its period, 

a. In seconds? 

b. In milliseconds? 
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c. In microseconds? 

d. In nanoseconds? 

4. In discussing one’s complement encoding we saw that “one’s complement means 
that you negate by subtracting from all ones.”  Why is there an apostrophe in the 
“one’s” at the beginning of that sentence and not in the second “ones?”  The 
correct answer is more than an exercise in grammatical pedantry, and requires you 
to do some research on one’s and two’s (and nine’s and ten’s) complement 
notations. 
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